

Efficient Cross-Validation of Echo State Networks

Mantas Lukoševičius and Arnas Uselis Kaunas University of Technology, Lithuania

19.09.2019 Munich, Germany

Outline

- Cross-validation in time series
 - How, why, and when you should use it
- Efficient implementation in ESNs
 - And other RC methods
- Empirical results

ESN training classics

 \mathbf{W}^{in}

W

 $\mathbf{x}(n)$

 $\mathbf{y}_{l}^{\mathrm{target}}(n)$

 $\mathbf{W}^{\mathrm{out}}$

- Generate ESN
- Learn $\underbrace{\mathbf{u}(n)}_{1} \circ \cdots \circ \mathbf{v}_{n} \to \mathbf{v}(n)$

 $\mathbf{Y}^{\mathrm{target}} = \mathbf{W}^{\mathrm{out}} \mathbf{X}$

- One-shot $\mathbf{W}^{\text{out}} = \mathbf{Y}^{\text{target}} \mathbf{X}^{\mathrm{T}} \left(\mathbf{X} \mathbf{X}^{\mathrm{T}} + \beta \mathbf{I} \right)^{-1}$
- Data / time / memory efficient
- Hyper-parameters are important
- Standard (static) validation:

Cross-validating time series?

- Standard in static tasks
- Less in temporal
 - Breaks continuity bad for backprop
 - Very expensive
 - Peeking into the future?
- Reservoir computing is well-suited

Validate

Test

Init

Train

Cross-validation schemes

1A 7-fold cross-validation

Init	Valid.			Tra	ain			Test
Init	Train	Valid.			Train			Test
Init			Train			Valid.	Train	Test
Init			Tra	ain			Valid.	Test

2A 7-fold accumulative validation

Init	Train	Val.					Init	Test
Init	Trai	n	Val.				Init	Test
					•••			
Init			Trai	n		Val.	Init	Test
Init			Т	rain			Val.	Test
	~ Min. →							

3A 7-fold walk forward validation

Init	Trai	in	Val.						Init	Test
Init		Т	rain	Val.					Init	Test
					•••					-
Init						Tra	in	Val.	Init	Test
Init							T	rain	Val.	Test
	← Mir	ı. →								

1B 7-step cross-validation

Init	Valida	ite			Train				Test	
Init	Train	Valida	ate		Tra	ain			Test	
					•••					
Init			Train			Valida	ate	Train	Test	
Init			Tr	ain			Va	lidate	Test	

2B 7-step accumulative validation

Init	Train	Vali	date				Init	Test
Init	Traiı	l	Validate				Init	Test
				•••				
Init			Train		Valie	date	Init	Test
Init			Train			Vali	date	Test
	≺ Min. →							

Validate Train Init Init Test Train Validate Init Init Test ... Validate Init Init Train Test Init Train Validate Test **←** Min. **→**

3B 7-step walk forward validation

Producing the final model

We have the best hyper-params, to get the final model we can:

- Retrain on all the folds
- Average over the splits
- Take the best split

Complexity of ESN training

- for each $n \in (1, \dots, T)$:
- update $\tilde{\mathbf{x}}(n) = \tanh\left(\mathbf{W}^{\text{in}}[1; \mathbf{u}(n)] + \mathbf{W}\mathbf{x}(n-1)\right)$ - collect $\mathbf{X}\mathbf{X}^{\mathrm{T}}$ $\underline{\text{Time:}} \mathcal{O}(N_{r}^{2}T) > \mathcal{O}(N_{r}^{3})$ Train $\mathbf{W}^{\text{out}} = \mathbf{Y}^{\text{target}} \mathbf{X}^{\mathrm{T}} \left(\mathbf{X} \mathbf{X}^{\mathrm{T}} + \beta \mathbf{I} \right)^{-1}$ <u>Space:</u> $\mathcal{O}(N_r^2)$

Efficient k-fold x-val. algorithm

- Collect global $\mathbf{X}\mathbf{X}^{\mathrm{T}}$
- foreach k fold:
 - Collect $\mathbf{X}\mathbf{X}^{\mathrm{T}}$ for val. fold, subtract from global $\mathbf{X}\mathbf{X}^{^{\mathrm{T}}}$
 - Train $(\mathbf{X}\mathbf{X}^{\mathrm{T}} + \beta \mathbf{I})^{-1}$
 - Validate on val. fold
- Time complexity
 - Time: $O(N_r^2 T + k N_r^3)$
 - Dominated by $\mathcal{O}(N_r^2 T)$ when $k < T/N_r$

Naive time: $\mathcal{O}(kN_r^2T)$

$$\mathcal{O}({N_{\mathrm{r}}}^2 T) \ \mathcal{O}(k {N_{\mathrm{r}}}^3)$$

Space:
$$\mathcal{O}({N_{\mathrm{r}}}^2)$$

Datasets used

Generative prediction

Dataset	Samples T	Valid/test samples	Folds k	Min. ratio
Labour	360	10	34	50%
Gasoline	1355	67	18	50%
Electricity	4033	200	18	50%
Sunspots	3177	200	10	50%

Time series classification

- Japanese wovels

Results: generative prediction

\mathbf{Method}		Labour		Gasoline		Elect	ricity	Sunspots	
Validation	Final	Valid	\mathbf{Test}	Valid	Test	Valid	\mathbf{Test}	Valid	Test
SV	As is Retrained	1.034	$1.927 \\ 1.957$	0.891	$0.881 \\ 1.132$	0.623	$\begin{array}{c} 0.860\\ 0.835\end{array}$	0.749	$0.784 \\ 0.755$
k-fold CV	Averaged Retrained Best	2.009	$ 1.835 \\ 1.833 \\ 1.838 $	1.000	$0.914 \\ 0.913 \\ 0.901$	0.834	$0.990 \\ 1.006 \\ 0.995$	1.060	$0.924 \\ 0.970 \\ 1.008$
k-step AV	Averaged Retrained Best	1.927	$\begin{array}{c} 4.469 \\ 1.171 \\ 4.546 \end{array}$	1.040	0.867 0.962 0.829	0.812	$0.829 \\ 1.006 \\ 0.820$	0.703	$0.835 \\ 0.742 \\ 0.855$
k-step FV	Averaged Retrained Best	2.188	3.413 0.681 2.799	1.065	$0.925 \\ 0.949 \\ 0.894$	0.783	0.733 1.006 0.769	0.726	0.640 0.612 0.649

Results: Japanese wovels

Method	Final	Validation error	Test error	Missclasifications
SV	As is Retrained	0.504 ± 0.017	$\begin{array}{c} 0.491 \pm 0.005 \\ 0.486 \pm 0.003 \end{array}$	5.0 ± 1.5 4.8 ± 1.6
CV	Averaged Retrained	0.493 ± 0.004	0.472 ± 0.008 0.468 ± 0.006	4.2 ± 1.8 4.4 ± 2.1
CV IReg	Averaged Retrained	0.489 ± 0.004	$\begin{array}{c} 0.468 \pm 0.009 \\ 0.470 \pm 0.008 \end{array}$	4.4 ± 1.2 3.8 ± 1.8

How it works

When Cross-validating time series makes sense

- When data are scarse, use it efficiently
- Averaging models is a form of aditional regularization
- It's about (non-)stationarity of the process
 - stationary: V scheme doesn't matter much
 - ~ "wanders" around CV
 - / "drifts" in one direction AV, FV, SV
 - (! strongly non-stationary hard to learn at all)

Conclusions

- The speedup applies to other Reservoir Computers too
 - No need to run the reservoir k times
- Cross-validation in RC
 - Is easy, efficient
 - Predicts testing performance better
 - Exploits RC strengths
- Extensions?
 - Weighting splits
 - Ensembling

Questions?

Contacts: https://mantas.info/