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Abstract

Pre-trained transformer models shine in many natural language processing tasks
and therefore are expected to bear the representation of the input sentence or text
meaning. These sentence-level embeddings are also important in retrieval-augmented
generation. But do commonly used plain averaging or prompt templates sufficiently
capture and represent the underlying meaning? After providing a comprehensive re-
view of existing sentence embedding extraction and refinement methods, we thor-
oughly test different combinations and our original extensions of the most promising
ones on pretrained models. Namely, given 110 M parameters, BERT’s hidden rep-
resentations from multiple layers, and many tokens, we try diverse ways to extract
optimal sentence embeddings. We test various token aggregation and representation
post-processing techniques. We also test multiple ways of using a general Wikitext
dataset to complement BERT’s sentence embeddings. All methods are tested on eight
Semantic Textual Similarity (STS), six short text clustering, and twelve classification
tasks. We also evaluate our representation-shaping techniques on other static models,
including random token representations. Proposed representation extraction meth-
ods improve the performance on STS and clustering tasks for all models considered.
Very high improvements for static token-based models, especially random embeddings
for STS tasks, almost reach the performance of BERT-derived representations. Our
work shows that the representation-shaping techniques significantly improve sentence
embeddings extracted from BERT-based and simple baseline models.

Keywords: BERT; embeddings; large language models; natural language processing; text

embeddings; sentence vector representation; semantic similarity; transformer models; prompt en-

gineering; unsupervised learning.

1 Introduction

Early work on learnable word-level representations [1] showed that semantic meaning can be
embedded in numerical vector representations. Arithmetic operations such as king − man

+ woman ≈ queen were valid. But can similar or higher abilities also be achieved for whole
sentences, not just individual words? They would enable better clustering, classification,
and other tasks depending on the whole meaning of the word sequence.

At the core of recent advancements in artificial intelligence is the transformer architec-
ture [2]. Compared to previous RNN-based models, it is fully parallelizable, allowing faster
training and greater generalization acquisition from the data. On their 10th birthday, a
child is expected to have already encountered and understood the meaning of more than
100 million words [3], and now large language models surpass such scales by multiple orders
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of magnitude. In addition to improved throughput, transformer models are based on a
self-attention mechanism [4] that allows the model to attend to relevant parts of the input
sequence. That is similar to how humans understand and experience the meaning of words:
using context. The success of the transformer architecture in Natural Language Processing
(NLP) tasks, starting with the BERT model [5], was also repeated in other fields such as
vision [6], speech [7], and reinforcement learning [8]. Transformer models enabled the solv-
ing of more sophisticated tasks such as sentiment analysis or question answering, as well
as became the state-of-the-art in almost every NLP task. Therefore, it should possess the
representation of the whole text sequence.

Transformer models generally have at least 12 layers and their parameters are counted
in hundreds of millions or much more. Condensing the sentence representation using these
weights into a fixed 768-length vector (a common length for token vectors in base trans-
former models) is a challenge. It turns out that simply extracting features from a trans-
former model’s last layer activations yields even worse results than much simpler models
[9]. There were multiple works that tried to optimize the architecture parameters (see [10],
which evaluated multiple proposed modifications), and multiple investigative works probing
the properties of different parts of the model (see a critical review [11] of such approaches).
Only the following methods gave tangible results: (1) the plain embedding averaging of all
tokens comprising the sequence; (2) engineering a prompt template to condensate sentence
representation into a single token; and (3) using a specially dedicated fine-tuned model
designed to produce such vectors.

Fine-tuning is definitely the most efficient option. Resulting models, such as InferSent [12]
or Sentence-BERT [9], showed state-of-the-art performance in sentence-level tasks at the
time. However, the success of fine-tuning depends on several factors. It requires high-
quantity and high-quality target domain data, as well as computational resources, which
may not always be available. Sometimes, even the existing target domain data cannot be
used, as they are very expensive to label. Other difficulties emerge if the data contain
sensitive or private information and present a risk of it surfacing during inference. Having
such constraints, one has to resort to the first two options of using raw encoded features to
produce a vector for a text sequence.

Using feature aggregation instead of fine-tuning also allows us to better explain the inner
workings of the state-of-the-art black-box models. Different parts of a transformer model
may be responsible for different levels of representation, which favor different tasks. It is
also important which levels in the representation hierarchy are easier to shape or process.
A better understanding of the inner workings could help address hallucinations or other
problems that current large consumer-grade language models face.

One of the two pre-training tasks of the famous BERT model [5] was next sentence
prediction. It was optimized through a special [CLS] token, which sought to capture the
whole-sequence-level representation. But in later works, such as [9], it was revealed that
such a representation is very poor, not better than the classic ones, and the authors opted
for simple averaging of the last layer tokens instead. The authors of [13] proposed using
averaging of tokens of the first and last layers, and the authors of [14] also included hidden
token representations of the second layer. But is that really the best way to obtain a
numerical representation of the text’s meaning?

Pre-trained models like BERT capture a lot of useful representations, yet it is not that
trivial to extract them. The authors of [15] showed that further improvements can be
achieved by removing the most frequent, sub-word, uppercase, and punctuation tokens be-
fore averaging. Furthermore, even larger gains can be achieved by using a prompt template,
“This sentence: "[X]" means [MASK]”, where the target sentence is placed instead of
[X] and the representation of the token [MASK] is used as the final representation of the
whole sentence. Such a method is a good example of representation extraction without any
specific fine-tuning.

Inspired by the above findings, we hypothesize that there may be more ways to dis-
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till relevant sentence-level embeddings without directly fine-tuning the pre-trained BERT
model. More concretely, in our analysis, we try to find a function that would shape and ex-
tract representations of bert base-uncased along its layers, target tokens, and additional
corpus, so that the best performance in multiple tasks would be achieved. We evaluate our
approach on short text clustering, semantic textual similarity, and classification tasks.

Considering the difficulties of acquiring representations from the state-of-the-art trans-
former models and following the success of recent works demonstrating it, our approach
offers these main contributions:

• We provide an extensive and organized review of related work on producing sentence-
level embeddings from transformer models.

• We experimentally test how multiple combinations of various of the most promising
token aggregation and sentence representation post-processing techniques impact the
performance of three classes of different tasks and properties of representations on
several models.

• We propose two competitive and simple static token models as baselines: random
embeddings and averaged representations (“Avg”).

• We propose an improvement for BERT: the BERT + Avg combined model. We
experimentally test many weights and layers of how the representations of BERT and
Avg can be most effectively mixed.

The rest of this paper is organized as follows. We provide a review of related work in
the literature on composing word vectors and representation reshaping to obtain sentence-
or text-level embeddings in Section 2. In Section 3, we outline the experimental setting and
give a detailed background on our chosen approach, models, and datasets. In Section 4, we
present the results. Finally, we summarize the findings of this work in Section 5.

2 Related Work

Taking the BERT model as an example, we are interested in how representation can be
aggregated over tokens, layers, and possibly modified, and which models produce the best
representations. Finally, we look at the evaluation options.

2.1 Composing Word Vectors

Thousands of works are being carried out on word-level vectors. Now, you can easily
download popular publicly accessible Word2Vec [16] and GloVe [17] embeddings. They are
lightweight and usually perfectly fit various word-level tasks. On the other hand, modeling
sequences of words is considered much more challenging. Count-based approaches lose
information on word order and are sparse. Learning higher-order n-gram vector space
models, not just words, but phrases or sentences, leads to sparsity, as frequencies vanish
for target n-grams and contexts. The latter, in particular, is the main driving force for
distributed representations. We will cover special methods dedicated to sentence level in
Section 2.3. Nevertheless, the easiest solution is to reuse individual word vectors of the
sequence.

The Principle of Semantic Compositionality (usually called Frege’s principle) states
that “the meaning of an expression is a function of, and only of, the meanings of its parts
together with the method by which those parts are combined.” [18]. Many scholars use this
as a guide to how a sentence/paragraph/document vector should be formed. According to
the principle, for much easier acquisition of word vectors, only the method of combination
needs to be found. Therefore, in this subsection, we review the most popular candidate
combination methods that should give us a sequence vector from its multiple word vectors.
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2.1.1 Formal Semantics

Historically, the first methods were formal and based on logic. Here, the meaning of a
sentence lies in the conditions under which it is true. A semantic parser, such as Boxer [19],
is used to produce semantic representations of the given raw text. One can easily imagine
the parse tree as a result of this analysis. As the structure is converted to first-order logic,
resulting in a formula, it can then be checked with a theorem prover or interpreted with
respect to a model, which is an abstract representation of a situation or setting [20, 21, 22].
Formal representations ensure that both semantic and syntactic information is preserved.

Unfortunately, formal methods have many practical shortcomings. A logic-based sys-
tem must explicitly maintain the lexical knowledge necessary for the inference. Therefore,
expensive human labor is involved in the construction and maintenance of these knowledge
resources. More importantly, it must be domain-specific. One cannot simply use all the
knowledge bases of the entire community, as this would hinder complex inferences of theo-
rem provers and model building. There is an area of research on reducing processing time,
given the large amount of knowledge resources [23]. Due to this property, logic-based sys-
tems have been criticized for their lack of robustness and scalability; implemented systems
tend to be small-scale and domain-specific [24]. Although being white-box, theoretically
clear, and promising, in practice, formal semantics methods are often surpassed by unsu-
pervised distributional approaches capable of utilizing huge amounts of data. As shown in
[25], symbolic representations can at least provide additional features for neural approaches.

2.1.2 Tensor Products

In [26, 24], it was proposed to combine two representations, each in vector form, using
tensor products, i.e., every element of the first vector is multiplied by every element of the
second vector, retaining the products of all the pair combinations. This way, two rank-1
tensors result in a rank-2 tensor. Combining more vectors results in higher-rank tensors. It
allows the tensors to represent the relations and role-filler bindings in a distributed fashion.
However, it raises problems due to the dimensionality growing exponentially in size as
more constituents are composed [27]. Furthermore, as noted in [28], tensor-based models
can only efficiently handle sentences of a fixed structure. Unfortunately, in most practical
applications, this is not the case.

Some methods try to solve the mentioned problems by sticking to the original vector
dimensionality. It can be accomplished using convolution methods [29, 30]. For example,
the circular convolution, as presented in [31], achieves compression by summing along the
transdiagonal elements of the tensor product. The compression is lossy, but the noisy
version of the original vector can be recovered using circular correlation [27] and matched
to the original one by comparing with all known component vectors. Due to the same
mathematical principles as light holography, these models are also referred to as holographic.

Some works related to tensor products stem from formal semantics in a way that syntax
drives the compositional process. In particular, it was expected that one of the most
important parts of the sentence is the pair of a noun and an adjective. Machine learning,
in particular regression-based, can be used to find the composition method. The idea is
that vectors for AN (adjective–noun) pairs can be learned in the same fashion as for regular
words. Then, given the constituents and the final AN vector, a linear mapping is learned.
In [32], the mapping is learned as a separate matrix for each adjective, while in [33], a
generic “AN-slot” function is trained. These methods do not increase the dimensionality,
yet it is not clear how they would work with more words than only the AN pairs. A later
work [34] extended the idea of the adjective matrix of [32] to other types (in addition to
adjectives and nouns). They emulate formal semantics by representing functions as tensors
and arguments as vectors. This way, subjects and objects are rank-1 tensors, while verbs
are rank-3. However, as the authors trained only nouns, verbs, subject–verb pairs, and
subject–verb–object triplets, their method is still limited to phrases no longer than three
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words.
Although tensor products share some exotic mathematical properties with quantum

mechanics, for example, quantum entanglement [30], the framework relies heavily on formal
semantics (see [35]). Therefore, it also shares the same weaknesses and is outperformed by
pure machine learning approaches.

2.1.3 Averaging

As neural vectors became more effective than traditional approaches [28], it turned out that
it was common to derive a vector for a sequence of words simply by summing or averaging
individual vectors. In 2009, the authors of [27] reported that for composing a phrase
representation, “averaging is the most common form of vector combination”. Despite its
simplicity, the basic rule of averaging word vectors was shown to work very well [36, 37, 38].
Later work, such as [39, 40, 41], even showed that simple pooling methods, such as basic
vector addition or averaging, match or outperform much more sophisticated methods for
encoding the meaning of a text sequence. The authors of [42] reported that in out-of-
domain scenarios, simple architectures such as word averaging outperform complex Long
Short-Term Memory (LSTM) models. In addition, they are even competitive with systems
tuned for particular tasks. Later work by [43] evaluated various compositional models and
found that word vector averaging performed reasonably well in most supervised benchmarks.
According to the authors of [9], even for the currently trending BERT transformer model,
to map the sentence to a single vector, the most popular approach is to average the word
embeddings of the BERT output layer.

As averaging is well-suited to acquiring sentence optimization, some methods take av-
eraging into their structure to further optimize it. One such example is the deep average
network (DAN) [44]. It takes the input as an averaged text sequence and passes it to one
or more feedforward layers to finally perform linear classification. Another, C-PHRASE
model of [45], is trained to predict the contexts of phrases from the additive combination
of their elements. Such a design results in a useful property of C-PHRASE, that summing
word vectors yields sequence representation. The authors of [46] found that one should use
an average of all hidden states of LSMT, rather than using representation only from the
last one. In a similar fashion, the averaging or summing is optimized in the works of the
Siamese CBOW model [47], Sent2Vec model [48], and in other works [49, 50, 51].

A model derived from BERT, specially designed for sentence embeddings, SBERT, also
uses averaging to pool words from two sequences to a pair of fixed-size sentence embeddings.
Later, using the pair and its element-wise difference, the representation is passed to the
softmax layer for classification and regression tasks. The authors of [52] tried to improve
this configuration by replacing the averaging with a convolutional neural network. However,
their improvement was limited to only better scores for the SALBERT model, which was
still lower than SBERT based on averaging. Therefore, calculating the mean embedding
from multiple word vectors is still a solid approach to the inner workings of current sentence
models.

Averaging is used in various scenarios. Some authors employ it to derive static embed-
dings from contextualized models. In [49], word vectors are learned by predicting them
from the average of all contextual embeddings of words (except the target word) returned
by the BERT encoder. Other authors of [53] derived static word embeddings from contex-
tualized transformer representations by averaging word embeddings for each word in 100k
different contexts. Such derived static versions are of better quality than classic Word2Vec
and share their benefits, such as having tens of millions of times lower computational cost
than using standard contextual embedding models [49]. The other scenario is to compose
a new more expressive meta-embedding from different models and domains. As a means
of composition, the authors of [54] proposed concatenation with some trainable methods.
However, a later work [55] found that averaging word vectors and padding them with zeros
to compensate for dimensionality mismatches is a surprisingly effective method.
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Despite its popularity, averaging has inherent deficiencies. The most prominent is the
loss of word order information. For this reason, it is sometimes called a bag-of-words
representation (that is, imagine that words lay in the bag in no specific order). As shown in
[44], models based on averaging are weaker in tasks that require syntax information. The
mean pooled static representations of the words “dog chased human” and “human chased
dog” will be the same. In addition, simple summation can cause destructive interference,
affecting valuable information. This is especially relevant in long documents. In addition
to neglected sentence structure and word order, the authors of [43] also note that individual
word identities are lost and noninformative words are more prominently represented than
essential ones.

However, to some extent, drawbacks can still be overcome. Most tasks do not usually
rely on word order, and the number of occurrences of order-sensitive elements, such as
double negations, is generally low. Word vectors have a rich representation and some
related knowledge can still be found in them. For example, the authors of [56] showed that
the average of the word vectors retains information about the original sequence length. It
is even more the case with contextualized transformer representations, where starting from
the second layer, each hidden vector is expected to “know” every other token vector and,
therefore, to be aware of the word order.

2.1.4 Weighted Average

Not all constituent words are of the same importance; therefore, the corresponding vectors
should be weighted. As a surprising event in Information Theory has higher information
content than an expected event [57], some specific words should also add more weight to
the sentence vector than others.

In an early work [27], we can already find different weights for the members of the pairs
of adjective–noun, noun–noun, or verb–object phrases. Later, work went from formal se-
mantics to statistics-based measures, in particular the tf-idf scores. They can be used as
features on their own, such as in [58], but it is better to use them to weight neural word
vectors. For example, the authors of [59] proposed the Composite Document Vector as a
concatenation of idf-graded weighted Word2Vec vectors and tf-idf features. The authors of
[60] proposed another better weighting approach, called Smooth Inverse Frequency (SIF).
Here, higher-frequency words are down-weighted smoothly. The authors of [43] evaluated
various compositional models and found that weighted averaging, in particular SIF, re-
sulted in better performance in unsupervised similarity tasks that outperformed all other
models. The author of [61] presented the uSIF method, an improvement to SIF, omitting
hyperparameter tuning and constructing weighting with both word frequency and word
vector length information. The authors of [62] also showed that the mean pooled output
of transformers using tf-idf weights is better for clustering than the only regularly averaged
output.

A drastic case of weighting—a total removal of some words—is also shown to improve
results. The authors of an older work [37] removed the stop words from the sequence be-
fore averaging. Meanwhile, as shown in [63, 15], the current performance of the BERT
transformer model is also significantly improved in Semantic Text Similarity (STS) tasks
if the most frequent tokens are removed. In other cases, the task itself focuses only on
a few words, and others become redundant. The authors of [64] found that for the rela-
tion extraction task, some sentence embedding methods work better with shorter spans of
words than the original sentences. They performed sentence segmentation in a way that a
(sub)sentence would cover the identified entity mentions. Other authors of [64] also noted
that SentenceBERT and Quickthought on spans or short segments containing two entity
mentions are more clusterable than on the original sentences. These works also highlight
the unequal contribution that each word has to the final sentence representation vector.

Some works use more complex word weighting schemes. For example, the authors of [46]
proposed a form of attention to weight each hidden state of LSTM. Other authors of [65]
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proposed the idea that each word brings a novel orthogonal basis to the sentence. There-
fore, the length of a projection in this direction can be converted into a word’s weight for
use in the averaging. They come up with the final weight, consisting of three scores: nov-
elty, significance, and corpus-wise uniqueness. Authors of [64] found that for the methods
analyzed, such weighting of GloVe embeddings made them the most clusterable. Similar
work by [66] incorporated alignment and novelty scores and applied them to contextualized
representations of SBERT. Here, the alignment measures how well the word aligns with the
neighboring ones, i.e., a well-aligned one is less informative and should be weighted less.
The novelty, similar to [65], is expressed as the magnitude of the orthogonal component of
the word to the subspace of neighboring words. Furthermore, the authors of [66] perform
average weighting through all SBERT layers and also weight each layer-aggregated vector
via l1-normalized variance. This means that words that evolve faster across layers will
receive higher weights since they have greater variance. Although complex to implement,
such methods are reported to provide some minor performance improvements.

Surprisingly, the norm of word vectors has a large dispersion, as observed by the authors
of [67, 68], and during the average pooling operation, it acts as a weight of the word
vector. The authors of [48] observed that their trained word vector in this way down-
weights frequent tokens by itself, and this weighting follows the hypothesis of Luhn [69],
a well-known information retrieval paradigm, stating that mid-rank terms are the most
significant for discriminating content. Using these insights, the authors of [70] used the
norm of word vectors as a proxy for the importance of words.

2.1.5 Clustering

As shown by [71], averaging word vectors leads to a loss of information. It is in particular
significant for longer text sequences, such as documents. Therefore, the idea was developed
to aggregate vectors in a more smooth and information-preserving manner. The authors of
[72] clustered the word vectors into k groups using k-means. Then, for a document, each
cluster vector is obtained as a sum of its constituent vectors. The final representation is then
the concatenation of the cluster vectors and the inverse cluster frequency (icf) values, which
are calculated using the idf values of the words present in the document. Other authors of
[73] proposed a similar method, but viewed it as one that reduces the dimensionality from
words to concepts. Concepts (as clusters) are created by clustering word vectors generated
from Word2Vec, and frequencies of these concept clusters are used to represent document
vectors. Finally, similarly to tf-idf applied to bag-of-words, a weighting scheme, concept
frequency-inverse document frequency (cf-idf), is applied to acquired bag-of-concepts. The
authors of [74] proposed the concepts of word containers and document containers to ex-
plain how such procedures bring benefits. Similarly to other works, they perform clustering
of words into distinct clusters. Vectors belonging to the same cluster are averaged, while
resulting representations among different clusters are concatenated. Using standard con-
textualized pre-trained transformer models with frozen weights, the authors of [75], instead
of a simple mean pooling, proposed training a categorical variational autoencoder and re-
ported the performance improvement on some STS tasks. This way, similar to clustering,
the lower intermediate compressed representation would carry the essential representation
of the sequence. Overall, using clustering of independent word vectors allows the document
representation to be expressed in a smaller space of concepts, whose concepts are otherwise
erased due to destructive interference during the global averaging.

The authors of [76] improved the aforementioned method of [72] by using soft clustering
and allowing a single word vector to participate in multiple clusters. More specifically, each
word is represented as a K × d dimensional embedding, where each kth row corresponds
to the original word vector weighted by its probability distribution in the kth cluster. The
embedding of this word is weighted with the inverse document frequency of the word and
summed with the embeddings of other words to form a document vector. As many values in
such a vector were observed to be close to zero, sparseness is induced with a given minimal
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value threshold. The authors of [76] named their method Sparse Composite Document
Vector (SCDV).

The success of SCDV was supplemented by numerous other contributions. The au-
thors of [77], instead of the Gaussian Mixture Models (GMMs), used K-SVD (an algorithm
for designing overcomplete dictionaries for sparse representation) [78] for the topic mod-
eling. Furthermore, they used a newer word vector algorithm Doc2VecC and a modern
SIF weighting and removal of the top principal component of [60]. Other authors of [79],
with their SCDV-MS method, additionally performed word sense disambiguation to dissect
polysemous words into distinct vectors. In this way, the quality of the clusters improved.
To induce sparsity, the authors also applied hard thresholding in an earlier stage in word
cluster assignments and trained word vectors with Doc2vecC. Next, with the emergence
of transformer models, the authors of [80] utilized contextualized representations in their
SCDV + BERT (ctxd) method. First, the corpus is contextualized following the technique
of [81]. That is, each corpus word is clustered among its individual recurrence contexts
into distinct clusters corresponding to the different meanings of the same word. After such
a procedure is repeated for all words, the vector for each word will then be the centroid
vector of the closest cluster. The authors of [80] then repeated the original SCVD procedure
and the result was an average improvement for STS tasks. Therefore, the idea of turning
global averaging to local inside-cluster averaging did not change; only newer representation
techniques and models were employed.

2.1.6 Spectral Methods

A text sequence comprising word embeddings can be interpreted as a multidimensional
signal over time. Therefore, temporal summarization techniques can be employed.

One such method is the Discrete Cosine Transform (DCT), originally presented in [82].
This invertible function maps an input sequence of N real numbers to the coefficients of the
N number of orthogonal cosine basis functions. The DCT components are arranged in order
of significance, with the first one being proportional to the simple average of the sequence.
DCT is used in data compression by preserving only the most important coefficients.

In [83, 84], DCT was shown to outperform simple averaging of word embeddings. First,
it can be attributed to the fact that DCT is structure-sensitive, as it captures signal dynam-
ics. Second, the DCT has multiple coefficients, with the first one already corresponding to
averaging; thus, it should capture more information and enrich the performance of probing
classifiers. The authors of [83] apply DCT along the sequence of words for each embed-
ding dimension. Then, they retain lower-order coefficients and concatenate them to obtain
overall feature patterns in the word sequence. One drawback of this technique is that short
sentences must be padded with zeroed vectors. The following work [84] also showed good
results for DCT in multilingual and cross-lingual settings.

Concerning the spectral decomposition of DCT, the authors of [85] proposed EigenSent,
which utilizes Higher-Order Dynamic Mode Decomposition (HODMD). The method sum-
marizes transitions in a sequence of words into one representative sequence embedding. The
authors found that the best performance is achieved when such an embedding is concate-
nated with simple word vector averaging. This way, information on both the dynamics and
the scale of the sequence is captured.

2.1.7 Using Special Tokens

Modern transformer models have several special tokens that can play an important role
during representation aggregation. For example, BERT has [CLS] designed for the next
sentence prediction task, and it is supposed to carry the meaning of the input text sequence.
The authors of [86] tried to use this property and trained the model to learn to aggregate
everything in this [CLS] token. Other special tokens are [SEP], used to separate two
text inputs, [MASK], to concentrate the representation of the masked word, padding, and
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various sentinel tokens (as in T5). Despite its intended purpose, special tokens are generally
dismissed, as in [87, 14, 88], and a simple average is used instead. However, such tokens
are important, as the authors of [89], after fine-tuning BERT, found a clear tendency for
earlier layers to pay attention to [CLS] and for later layers to pay attention to [SEP].

Recently, a prompt-based learning paradigm has emerged (see the survey [90]). Here,
instead of fine-tuning the model to the downstream task, one reformulates it to look like
the one that was being solved during the model pre-training process. Therefore, the main
effort goes to prompt engineering, i.e., finding the most appropriate prompt for the given
task. Such a strategy is especially suitable for very large, even colossal language models
that are difficult to train.

The authors of [15] successfully used prompt engineering to better capture sentence
embeddings with the BERT model. During the manual prompt search, the best prompt
found was “This sentence: "[X]" means [MASK].”, where [X] is replaced by the input
sentence, and the output vector of token [MASK] is used as a final representation of the input
sequence. Then, they further optimized the template by fine-tuning it on Natural Language
Inference (NLI) data with the contrastive objective, while the BERT model weights were
frozen. The authors used the continuous template technique of [91], where each template
token is treated as a vector and optimized by gradient descent. The final template was
shown to outperform multiple untrained baselines. The authors also showed that different
templates can be used effectively to represent the same sentence with different points of
view during supervised contrastive learning. The following work by [92] adapted the idea of
using prompt instead of mean pooling and also used this representation extraction during
contrastive learning.

2.1.8 Aggregating through Layers

One special aggregation that is possible with newer contextualized models is through deep
neural network layers. For simplicity, we refer to transformer model blocks as layers.

One can imagine that “each layer will increasingly magnify small but significant differ-
ences” [44]. Therefore, the early layers capture more fundamental and low-level information
[89], which dominates the learning of shallow lexical and meaning-related knowledge [93].
The authors of [75] reported that the word embeddings of the lower layers of BERT perform
better than their upper layers on a word analogy task, and other authors of [53] showed
that the first quarter of the models’ layers perform best in lexical semantic understanding.
In the middle layers of the transformers, the hidden states are the most transferable [94]
and contain the most relevant information [95]. The authors of [96, 97] report that the
middle layers of the multilingual transformers are more multilingually aligned. According
to the authors of [93], with the inclusion of context in the upper layers, the encoded con-
cepts evolve into a linguistic hierarchy where the middle and upper layers have a better
representation of the core linguistic and semantic concepts. Finally, as the author of [98]
explains, upper-layer representations become more context-specific.

A general tendency, as shown by [99], is that the STS performance increases until the
middle layers before decreasing toward the final ones. The authors of [99] even report that
the final layer of most transformer models produces the worst-performing representations.
Most scholars agree that this is due to the overspecialization of the last layers to the pre-
training task [100]. Therefore, the final layers of BERT are the most task-specific [101]
(but not as much as LSTM, as analyzed in [94]). Even during the fine-tuning phase, the
authors of [89] determined that the last two layers encoded the highest share of task-specific
features attributed to the score gain. Therefore, the last layers are specific to the training
objective and cause problems if it differs a lot from the downstream task objective.

However, some work in [102, 103] found that it was beneficial to apply post-processing to
the final layers. This enabled them to restore the apparent drop in representational quality
in later layers and gave large performance improvements. It is thought that anisotropy,
known as the narrow cone of embeddings in vector space, may be to blame, which in
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[98] was found to increase from the earlier to the later layers. However, successful post-
processing reveals that the last layers also possess relevant knowledge, but it is somewhat
obscured in the raw outputs.

The question is how to compose a universal representation from the relevant pieces in
multiple layers. One way is to try various combinations. The authors of [14] analyzed all
possible two-layer combinations for BERT. They found that combining the top and bottom
layers is better than using only the top layers. They tried to expand it to more layers
but remained on a combination of three layers (L1 + L2 + L12). From the older works,
we can mention the AdaSent model [104]. It operates on a hierarchy of representations
derived from a pyramid-like multilayer network structure. The gating network is trained to
adaptively select the most appropriate representation in the hierarchy for the given task.
A similar gating system for dynamically deciding which intermediate transformer layers to
use was proposed by the authors of [105].

The contribution of each layer can also be accounted for by weighted average. The
authors of ELMO [106], a contextualized model based on LSTM, present this configuration
with additional weight parameters for each layer. Other authors investigating representa-
tions [107, 94, 95] call this weighting a scalar mix technique. The authors of [66], instead of
learning layer weights for each word, compute them using complex alignment and novelty
measures. For a few-layer model like ELMO, other authors of [108] found it useful to con-
catenate representations across layers while averaging across tokens, rather than using only
the top layer. Other authors of [86] extract relevant information from intermediate hidden
representations of BERT by treating them as positive samples during contrastive learning
and determining which final sentence embedded in the tuned model should be close.

In conclusion, there is no generally accepted method for taking advantage of repre-
sentations across all layers in an unsupervised setting. In the other, supervised case, the
whole network is fine-tuned, and the whole hierarchy of representations is taught to surface
representations according to the task at hand.

2.1.9 Other Means of Composition

Many other composition functions can be used to derive sentence embeddings. In an early
work [27] on phrase composition, the authors also found that multiplicative and dilation
models perform well. However, there are caveats; element-wise multiplication of sparse
representations results in loss of information (this effect is especially strong for more than
two words), while dilation, just like weighted average, requires additional parameters. It
should also be mentioned that max pooling is quite a popular operation to aggregate the
output of the LSMT encoder, as shown in [109, 12], and also by the authors of [86], who
found it to work best for all BERT layers for the STS benchmark task. According to the
authors of [110], max pooling is also competitive with boundary-based methods (such as
those that use embeddings of words in the boundaries) for the representation of the text
span.

The input text sequence can be combined hierarchically. The authors of [111] used a
recursive autoencoder to contract two child words to a single parent one repeatedly, to arrive
at a final single common parent representation of the whole sequence. Later, the authors of
[112] extended this combination to specifically follow the structure of the parse tree. Such
a recursive model allowed them to compose word vectors in a bottom-up approach up to a
sentence level and outperform the simple averaging method. However, a drawback is that
such a composition is limited to only sentences. Other authors of [41] used similar ideas for
combinations, but did not learn any composition function. Instead, given a specific window
length, the vectors of words in these windows are averaged, and the resulting embeddings
are then max-pooled. Such a setup better preserves the spatial information.

The common average operation can be generalized as a power mean, as proposed for
information retrieval in [113]. The authors of [114] introduced such an idea for combining
word vectors. They showed that using the document vector as a concatenation of the power
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mean with different power values, particularly p = ±∞ (maximum and minimum), p = 1
(regular arithmetic mean), and other p > 0, substantially improves the representation of the
document. Other authors of [115] also proposed a long vector representation. They employ
self-attention to replace the max (or average) pooling from either RNN hidden states or
convolved n-grams, resulting in the sentence embedding of the matrix form. However, as
the authors of [116] criticize, concatenating representations is problematic. According to
them, bigger embeddings will always increase the performance of the linear model on top
of them. Therefore, embeddings of the same size should always be compared. In light of
this, concatenation is an undesirable operation.

2.2 Reshaping Representation Spaces

Word and sentence vectors obtained by older Word2Vec [1], GloVe [17], and current state-
of-the-art transformer techniques are not ideal. Therefore, additional processing techniques
are applied to eliminate side effects and improve the performance of downstream tasks.
In this subsection, we will describe anisotropy, a phenomenon believed to be responsible
for this, the reasons for its appearance, and the techniques that attempt to improve the
representation space.

2.2.1 Isotropy

Isotropy is defined as uniformity in all orientations. In this work, we talk about embedding
spaces of words and sentences. According to the authors of [117], “distribution is isotropic
when the variance is uniformly distributed across all dimensions”.

The anisotropic properties of independent word embeddings were first observed by the
authors of [118]. They analyzed common embedding models and found that, in all cases,
word vectors share a nonzero common vector; therefore, they are not zero-centered. The
authors also found that the variance ratios of the first few components derived by PCA decay
nearly exponentially. Furthermore, the variances explained by the leading components
“encode the frequency of the word to a significant degree”. Therefore, they proposed
eliminating the common mean vector and then removing the top principal components,
computed on representations from the entire vocabulary. A similar procedure was also
shown in an earlier work [60] to be a very good baseline. Here, words were combined
by a frequency-weighted average, and then just the first principal component (yet dataset-
specific, as computed on the entire dataset) was removed. As shown by the All-But-The-Top
(ABTT) method of [118], such a simple procedure, eliminating the common mean vector
and a few top dominating directions from the word vectors, greatly improves both the
isotropy and the downstream task performance (for sentence tasks, a simple average of
preprocessed word vectors is used). As found by [119], it is already known that the isotropy
of the target embedding is critical for the alignment of embeddings, which is important
for areas such as domain adaptation, word embedding evaluation, and machine translation.
However, the work [118] became the main stimulus for the research direction that attempts
to improve the isotropy of word embeddings.

Word representation anisotropy is also observed in the latest contextualized models. The
authors of [120] first observed this effect on the transformer machine translation model [2],
while the author of [98] found that this is the case for all ELMo [106], BERT [5], and GPT-
2 [121] layers. All representations for randomly sampled words from these contextualized
anisotropic spaces were observed to be highly similar, far from zero average cosine similarity.
Furthermore, the embeddings of any two words are positively correlated. Finally, it was
observed that all word vectors in the representation space tend to occupy a narrow cone.

The research community offered some explanations for why anisotropy may occur. We
will cover them in more detail below.
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Word Frequencies The authors of [122] were among the first to observe that word
embeddings encode a surprising degree of information about word frequencies. In [60],
it was shown that simply representing sentences as a weighted average of words by their
frequencies is a very competitive method. In particular, the authors computed the weighted
average of the word vectors in the sentence (the weight of a word w is a/(a+ p(w)), with a
being a parameter and p(w) the frequency) and then removed the projections of the average
vectors on their first singular vector (“common component removal”). Later, the authors
of [118] suggested removing more than one component. They found that the top PCA
directions encode word frequency information; therefore, the method was proposed to null
these directions. As this bias is very strong in representation space, it is inevitably related
to the anisotropy phenomena.

Similar encoding of frequency information is also evident in contextualized embeddings
of modern transformer models. The authors of [123] investigated BERT embeddings and
found that high-frequency words are all close to the origin and densely concentrated, while
low-frequency words are far away and scattered sparsely. The work in [124] highlighted that
anisotropy is the most pronounced in rare words. The authors of [125] also showed that
the same applies to multilingual BERT embeddings; they have a biased structure towards
word frequency.

This bias to word frequency reveals a weakness. The authors of [126] constructed a
dataset using semantic relations extracted from WordNet [127] to test the semantic prop-
erties of words. Using that, they showed that the ability of BERT to understand words
depends highly on their frequency, and therefore rare words are neglected. It was depicted
in [63] that removing the 34 most frequent tokens before averaging can greatly boost the
performance on semantic textual similarity tasks. The authors of [124] conducted a simple
experiment on the CNN News corpus with popular WordPiece tokenization and found that
30% of the corpus can be accounted for using the 13 most frequent tokens, while to cover
at least 98% of the corpus, nearly 15,000 tokens are needed. Therefore, rare words are a
constituent part of modern NLP pipelines and, unfortunately, induce deficiencies.

The authors of [120] proposed an explanation for generation models that related obser-
vations of the narrow cone form in the representation space and the frequencies of words.
They argue that the main culprit is the way models are trained on the language modeling
task. During the training process, the ground-truth word embedding will be pushed toward
the direction of the hidden state to obtain a larger likelihood. Meanwhile, the embeddings
of most words in the vocabulary (with non-appearing and rarely appearing frequencies) will
be pushed towards similar directions negatively correlated with most hidden states and thus
end up grouped together in the local region of the embedding space. The following work
[124] complemented the given explanation with the “common enemies effect”—the effect of
the target words producing gradients of the same direction for all of the non-target words
at each step of training with cross-entropy loss, and rare tokens are the most affected by it.
The authors also found that the embeddings learned by GPT-2, BERT, and RoBERTa do
not degenerate into a narrow cone (they only appear as a cone when projected to a lower-
dimensional space), but instead drift in one shared direction. Therefore, the “common
enemies effect” is argued to be the main culprit behind the anisotropy of the representation
space.

Outliers There is evidence from multiple authors that contextualized representations of
transformer models (in particular, the BERT family) contain undesirable outliers (interest-
ingly, abnormal dimensions were also previously observed for GloVe vectors in [128]). These
are certain positions in word vectors with unusually high values. The authors of [129] called
it outlier dimensions; in [130], it is referred to as outlier neurons, while the authors of [102]
call it rogue dimensions. In all of these works, it is agreed that it is a significant contributor
to the anisotropy of the representation space.

There is debate about what causes outliers. The authors of [129] found that outliers are
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essential for good downstream performance. They regard it as a distinct model property
that emerges during training and even encourage one to consider it during weight initial-
ization. In contrast, in [102], it was found that the behavior of the model is not driven by
outliers; rather, only a small subset of linguistic abilities is handled there (such as positional
information; its relationship with outliers was revealed in [130]). Even more strangely, the
authors of [125] found that the embedding space of the multilingual BERT model does not
have outliers as the English BERT does, but is still anisotropic.

There are several options to account for outliers. The most obvious solution is to remove
them. The authors of [130] showed that this brings improvements for tasks that directly
use the geometry of the embeddings, such as semantic textual similarity; however, ref.
[129] showed that disabled outliers significantly degrade both Masked Language Modeling
(MLM) loss and downstream task performance. The authors of [102] suggest that rogue
dimensions be accounted for through the standardization transformation. Both options
aim to reduce the dominating effect of the highest-value dimensions during the similarity
measure, such as cosine similarity or Pearson correlation. On the other hand, one can argue
that the similarity measure we use, not the representation space, needs improvements.

Criticism Many works try to improve the isotropy of representation spaces, but is that
truly the right way to seek performance improvements? Some recent publications, such as
[124], expressed doubts about the role of isotropy in model performance, and the authors
of [131] even observed a negative relation between isotropy calibration and downstream
performance. The works in [124, 117] ask whether there is truly a “narrow cone” in the
embedding space. Other authors of [15] argue that the main problems are various biases
unrelated to isotropy. Furthermore, the authors of [117] criticized multiple popular measures
of isotropy and warned that they are misleading and inaccurate.

The authors of [132] analyzed the contextual embedding space and found isolated clus-
ters and low-dimensional manifolds. They concluded that although the embeddings are
globally anisotropic, local isotropy exists. The authors of [133] continued this observation
and applied the known preprocessing techniques of [118], not globally but locally, in clus-
tered regions of representations. They observed that sense-level information is shadowed by
structural, syntactic, and tense biases (for verbs), which their method of dominant direction
removal helps to reduce. Another work [134] showed that during the fine-tuning phase, the
anisotropy becomes even worse, while, in contrast, the performance of STS increases. They
found that removing the top dominant directions for fine-tuned representations becomes
detrimental, as the most essential information resides there. These findings indicate that
the representation space of transformer models is quite complicated and that a simple fix-
ation on isotropy can destroy its native features. These also include biases, the usefulness
of which may not be obvious to us, but models have found them helpful during the pre-
training. In the end, brute-forcing the plain isotropy may harm some intricate semantic
details, which we seek to capture.

2.2.2 Post-Processing Methods

Many post-processing methods have been proposed to improve the embeddings. Whether
they improve the isotropy of the representation space or help surface-relevant information
[135], multiple authors show the benefits of using them. However, these methods generally
favor unsupervised tasks, such as semantic textual similarity, with limited improvements
for downstream tasks. If enough data on the target task are available, supervised training
will inevitably be a better choice, as the transformation relevant to the task is learned.
However, post-processing may be the only option if the training samples are obscure.

The simplest is the centering operation. It is especially important for the STS task that
involves cosine similarities. The authors of [124] found that it restores a nearly perfectly
isotropic distribution. Subtracting the mean is also the first step in several other post-
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processing methods. In some sense, such operations as centering can be viewed as fine-
tuning to the target domain, as all target embeddings participate in providing the mean
coordinates.

We already mentioned some operations related to isotropy enhancement in the previous
section, such as zeroing target outliers or ABTT. In the following, we will mention the
remaining important ones.

Z-Score Normalization The Z-score describes the position of a point in terms of its
distance from the mean when measured in units of standard deviation (in the distribution
of the target samples). Z-score normalization, also called standardization, transforms the
distribution of embeddings to have a zero mean and a unit standard deviation in all dimen-
sions. The works in [102, 103] recommend that you consider it as a post-processing step.
The authors of [116] advise using normalization, such as the z-score, in supervised settings
as a binary hyperparameter, because it can lead to rank changes.

All-But-The-Top (ABTT) Many works are based on the influential ABTT algorithm
[118]. It has a hyperparameter, which tells the number of dominant directions to remove.
Principle components are either completely removed or left intact. As a result, the main
weakness is finding the right number of top components to remove, which can either cause
information loss or eliminate an insufficient amount of noise. The authors of [136] proposed
post-processing through variance normalization (PVN) to normalize the variance of leading
principal components to the same level instead of total component disposal. The authors
of [137] performed the removal in a softer way by employing matrix conceptors [138] in
an unsupervised way. A similar technique that employs conceptors can also target specific
components, such as those that incorporate social biases, and diminish them, as in [139].
Other authors of [140] proposed learning weights for each dominant direction removal. All
these approaches try to preserve useful information residing in the top principal components
while narrowing the target noise.

Authors of [141] combined ABTT and dimensionality reduction. They found that the
best pipeline is to perform ABTT twice while performing dimensionality reduction in be-
tween. In another line of work, the authors of [133, 125], instead of global post-processing,
remove local dominant directions in separate clusters in the representation space. In this
way, the structure of the representation space is accounted for. Similarly, the authors of
[65], in light of the predecessor method of ABTT [60], proposed to eliminate the sentence-
dependent principal component, where they rerank the top principal vectors based on cor-
relation with each sentence. This individual removal of dominant directions was shown to
improve performance on the STSB task.

Whitening The authors of [13] proposed the whitening approach to alleviate the anisotropy
problem of sentence embedding. The whitening operation involves centering embeddings
at the origin and making different dimensions have a unit variance and be uncorrelated,
turning their covariance matrix into the identity matrix. It was also found to be useful in
earlier work for the alignment of bilingual embeddings [142]. As a side effect, the authors
of [13] showed that whitening can also be used with a dimension reduction operation. A
concurrent work [14] also used a whitening algorithm to improve performance on STS tasks.
In that work, the authors combined the first and last layers of BERT embeddings and then
normalized them with whitening. Despite the initial success, subsequent work criticized the
whitening operation. The authors of [143] showed that whitened representations greatly
improve uniformity, but also suffer degeneration in the alignment property (for alignment
and uniformity properties, see [144]). To make matters worse, the authors of [145] called
whitening a “trick” that only helps with similarity tasks (by partially overfitting) and harms
downstream task performance.
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2.2.3 Retrofitting

This word vector space specialization method can incorporate semantic knowledge from
external resources into word embeddings. The authors of [146] were the first to use the
term “retrofitting” for their post-processing step of vector space word representations. Their
idea was to incorporate rich relational information from semantic lexicons to word vectors,
which are trained in a data-driven fashion using plain texts. The authors showed that the
new vectors are similar in both their purely distributional representations and related word
types. In addition, they showed improvements in several benchmark tasks.

Retrofitting can be useful for fitting a desired domain that is different from the original
one used to pre-train the word vectors. An example is [147] where the authors retrofitted
to linkage information in biomedical taxonomy. Another related field is the alignment of
cross-lingual word embeddings. The authors of [148] used retrofitting to align the vectors of
the source and target languages in the dictionaries. This way, translation pairs are pulled
closer while minimizing deviation from the original embeddings and preserving the existing
representation. In all these cases, the retrofitting is based on external relational data.

According to the authors of [149], the weakness of retrofitting is that only the vectors
of words present in the external constraints (resources) are modified. Therefore, they pro-
posed an explicit retrofitting model in which external knowledge relations are turned into
supervised training examples. Here, the distance between synonyms is supposed to be as
low as possible, and between antonyms as high as possible, while between remaining words
not present in the external knowledge base, it should remain the same as in the original
representation space. This way, on top of word vectors, a deep feedforward neural network
is trained to retrofit all the word embeddings.

Some work also found success in applying retrofitting to contextualized representations.
The authors of [108] observed that for ELMo [106] representations, the distance between
the shared word in the paraphrases is even greater than the distance between “large”
and “small” in random contexts. Therefore, to improve the representation capabilities,
they minimized the difference in contextualized representations of the shared word in para-
phrased contexts while differentiating between those in other contexts. This retrofit resulted
in improved performance of downstream applications. Other authors of [150] proposed a
two-step process: first to train static vectors from contextualized ones, and then to perform
retrofitting. They showed that compared to baselines, such an approach gives the best
results in a range of intrinsic and extrinsic tasks.

2.2.4 Other Methods

Some methods are proposed to reduce anisotropy during the training process. In particular,
the authors of [120] added the specific regularization. According to them, the aperture of
the narrow cone of representations can be improved by minimizing the cosine similarities
between any two word embeddings. Such regularization encourages the vectors to be more
evenly spread and expressive. This method is highly related to the now-popular contrastive
learning approach (see Section 2.3.3). Other authors of [151] improve the isotropy of the
output embedding matrix using the spectrum control method. They guide the singular
value distribution of the embedding matrix throughout the training process and control the
decay rate of these singular values.

The authors of [123] suggest learning transformation of the embedding space of the
transformer, sometimes called a flow technique. Their method transforms the BERT sen-
tence embedding distribution into a smooth and isotropic Gaussian distribution. During
unsupervised training, only the flow network is optimized, while the BERT parameters
remain unchanged. Although BERT-flow showed performance improvements on multiple
tasks, the technique is criticized in the literature. First, it needs a specialized implementa-
tion and has multiple additional parameters. The authors of [131] report that BERT-flow
requires on average 4.2 times more time per training epoch. Furthermore, for the STS
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benchmark task, the authors of [145] report that BERT-flow with the l2 similarity metric
performs even worse than the baseline of the BERT average.

Different post-processing can help surface the different information residing in the em-
beddings. The authors of [135] proposed a simple unsupervised singular value decomposition
to reassign the feature weights. By changing the similarity order of their transformation,
they tailored word embeddings in the semantics/syntax (tasks focusing on sing–chant or
sing–singing) and similarity/relatedness (tasks solving car–automobile or car–road relation-
ships) axes. Other authors of [152] used spectral filters to dissect BERT representations
at different temporal scales. They showed that a low-pass filter yields the highest probing
accuracy in topic classification, a high-pass filter in speech tagging, and a middle-pass filter
is best in dialog act speech tasks.

2.2.5 Similarity Measures

Some most basic tasks for sentences require measuring the distances between the corre-
sponding embeddings. Usually, cosine similarity is employed. However, if the continuous
representation space is curved or a text sequence is treated as a set of words, different met-
rics or representation space manipulations can be beneficial. The authors of [153] proposed
Mutual Information (MI), well known in information theory and statistics, as a candidate
for a similarity measure. They managed to successfully estimate MI for continuous random
variables by the use of Kraskov–Stögbauer–Grassberger (KSG) estimator [154], which is
based on elementary nearest-neighbor statistics. The other authors of [155] advised com-
paring sentence embeddings consisting of word vectors averaged by rank correlation, such
as Kendall’s τ . They argued that such measures enable mean pooled representations to
rival modern deep ones, used with cosine similarity. The authors of [156] proposed treating
sentences as fuzzy sets of words and showed good performance with the specially adapted
DynaMax similarity measure. They showed that word vectors alone are sufficient to achieve
excellent performance on semantic textual similarity tasks when sentence embeddings and
similarity measures are derived using ideas from fuzzy set theory. Other authors of [157]
suggest processing each sentence with respect to its found k-nearest neighbors. Then,
they find an optimal Euclidean subspace of the sentence manifold where cosine similarity
would work best. The authors of [158] also project the sentences onto a fixed-dimensional
manifold with the objective of preserving local neighborhoods in the original space. All
these works mentioned employ various strategies to enhance the comparison of document
representations, tailoring their approaches to the given task.

Many similarity measures between sets employing earth mover’s distance were proposed.
The authors of [159] were the first to frame the similarity of documents as a transportation
problem. The idea is that the distances between similar but different words in two docu-
ments should be small. Their Word Mover’s Distance (WMD) is the cost of transporting
a set of word vectors in an embedding space. This approach was effective, as it managed
to exploit similarities between different Word2Vec word vectors, such as the relation of
analogies. However, the main deficiency of WMD was that the distances were expensive
to compute. Moreover, an output, the single number of a distance between two given
documents, can only be combined with k-nearest neighbors or k-means, while applications
usually require a whole feature vector. The authors of a subsequent work [160] managed
to derive vectors for documents using WMD. They constructed a positive-definite word
mover’s kernel using a feature map given by the WMD to random documents and then
derived document embedding via a Random Features approximation of the kernel. Other
authors of [70] proposed Word Rotator’s Distance (WRD). It is designed so that the norm
and angle of word vectors correspond to the probability mass and transportation cost in
the earth mover’s distance, respectively. Therefore, the norm of vectors, which is associ-
ated with the vector’s significance, does not interfere with the calculation of transportation
cost, as in WMD. Finally, the authors of [161] attempted to include structural information
absent in the WMD’s distance estimation between two sets of words. They represented the
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sentence vector as a weighted average of substructure vectors at a lower level in a recursive
way, while a transport plan at a different level explains how the different substructures
align.

2.3 Learning Sentence Embeddings Directly

We already mentioned some models that learn the aggregation of tokens or their combina-
tion rules. However, in this section, we will look at more direct approaches to learning a
representation vector for a given text.

2.3.1 Paragraph Vectors

The method presented in [162], and sometimes called Doc2Vec, is one of the first successful
Word2Vec [16] adaptations to sequences of tokens. The authors presented two methods of
how document representation could be trained.

In the Distributed Memory model of Paragraph Vectors (PV-DM), every paragraph is
mapped to a unique vector, which, together with context words, participates in predicting
the next word. This way, such a unique vector acts as a memory that stores the topic of
the paragraph and bears its representation. The second is the Distributed Bag Of Words
version of the Paragraph Vector (PV-DBOW) model. It leaves only a unique paragraph
vector in the input and predicts words randomly sampled from that paragraph in the output.
However, unlike the first method, it does not account for word ordering.

In the original article [162], authors represented sentences as a concatenation of DM and
DBOW vectors, as they saw such a setup as more consistent. Later works [163, 164] also
reported that individual model performance had only marginal differences, yet deviations
were usually task-dependent.

The authors of [165] proposed a modification to Paragraph Vectors and called it Doc2VecC.
Differently from Doc2Vec, a document vector is derived not as a unique vector, but as an
average of sampled constituent word embeddings. The other notable contribution is the
added data-dependent regularization that favors informative or rare words while forcing the
embeddings of common and non-discriminative ones to be close to zero. At the time, the
authors showed Doc2VecC to match state-of-the-art in multiple tasks.

2.3.2 To RNN- and Transformer-Based Models

Shallow Doc2Vec-like models soon met competition from more complicated Recurrent Neu-
ral Networks (RNNs). In a sequence-to-sequence [166] (like machine translation) setting,
such a model usually has two parts: encoder and decoder. The encoder, going through each
token one by one, encodes the input sequence into a fixed hidden representation, which is
later used by the decoder to generate the target sequence (translation in NMT) token by
token. Meanwhile, only the decoder part is needed to generate sentence representation.
Words of the sentence are sequentially fed as input to the RNN, and the final hidden state
is interpreted as its representation.

The benefit of RNN models is that the sequential consumption of tokens allows the final
representation to account for the word order and process the arbitrary number of tokens.
However, the effectiveness of this mechanism is questionable. It turns out that information
has a hard time propagating all the way to the final hidden state. As compensation for
that, a bidirectional [167] setting was used, which connects two hidden layers of opposite
directions to the same output, simultaneously getting forward and backward information.
The second solution was to use an attention mechanism [4], which, during decoder token
generation, takes a weighted average of the encoder hidden states from all the input tokens.
But it was only helpful for sequence-to-sequence tasks, like translation, as such a mechanism
removed the last hidden state bottleneck, which was required to compress a long sequence
of tokens into a single vector for a whole text representation.
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One of the first famous recurrent models for sentence representation is the SkipThought
[168]. This model is trained to predict neighboring sentences from the source one. The
center sentence is encoded by a bidirectional GRU (Gated Recurrent Unit [169]) that con-
catenates the last hidden state of a forward GRU and the last hidden state of a backward
GRU, and then decodes it into the two target sentences. This way, the encoder is trained
to map a sentence to a single representative vector. The authors showed that the model is
robust and performed well on all tasks considered. The main drawbacks of this model are
the month-long training, huge vector size of 4800 (resulting from the concatenation of 2400
vectors from two separate models), and support of only sentence-level embeddings, as well
as the need for training text with a coherent inter-sentence narrative.

As recurrent GRU or LSTM [170] architectures became the standard, the most recent
advances in text representation were due to how data and training objectives were cho-
sen. Here, we have to mention a famous InferSent [12] model. The authors showed that the
high-quality supervised data, although in low quantity, can hugely increase the performance.
They trained an encoder based on a bi-directional LSTM architecture with max pooling, on
the Stanford Natural Language Inference (SNLI) [171] dataset. The resulting model out-
performed SkipThought after less than a day of training on a single GPU. Other authors of
[172] modified the SkipThought model to QuickThoughts by framing the training task as a
classification. Instead of generating the target sentence, the model encodes the likely candi-
dates and chooses one of them. Authors of [173] leveraged several data sources with multiple
training objectives. Their GenSen model training tasks included Neural Machine Trans-
lation, Constituency Parsing, Natural Language Inference, and SkipThought-like training.
Finally, authors of [174] proposed even greater utilization of training data by constructing
a discourse marker prediction task, predicting tokens such us because, and, if, etc. Such
framing of the task allowed the authors to mine vast amounts of text pairs together with the
connecting markers. Their DisSent model performed similarly well to InferSent on various
transfer tasks. Overall, one can see that how the model is trained and data quality and
quantity play a huge role in the resulting text representation performance.

Many drawbacks of the recurrent models were solved by the transformer architecture [2].
The authors decided to get rid of recurrence and leave only the attention mechanism [4]
itself. The resulting model (1) is highly parallelizable; (2) only after the first layer, each
token has already attended to every other; and (3) it is faster than RNN models when
the sequence length is smaller than the representation dimensionality. These properties
allowed us to train transformer models with staggering amounts of text much faster and
they became state-of-the-art models on multiple tasks.

Previous advances in sentence representation using RNNs were quickly applied to the
new architecture. The authors of [175] presented a Universal sentence encoder model. It
used only the encoder part of the original transformer model trained with multiple tasks:
Skip-Thought-like training, SNLI, and conversational response prediction [176]. After the
appearance of the pre-trained BERT model, the authors of [9] proposed SBERT: a pre-
trained BERT model further fine-tuned with NLI data. It was a huge success, similar to the
earlier InferSent model, yet this time both the new architecture and the general pre-training
were the new factors for additional performance advancement. Other authors of [177] tried
to further utilize the unsupervised data. Their PAUSE model learned sentence embeddings
from a partially labeled dataset and showed that this way, the same performance can be
achieved with a smaller fraction of labeled NLI data. Here, we see the same tendency as
with the RNN models: new efforts to construct better fine-tuning tasks and better utilize
existing data.

2.3.3 Contrastive Learning Approaches

The search for better training tasks and data utilization culminated in a new area of con-
trastive learning.

18



Distance-based contrastive loss [178] is more attractive for learning sentence-level embed-
dings than the more conventional error prediction losses. It allows for a simple construction
of self-supervised learning using pairs of positive and negative examples. Embeddings of
the first group of samples are encouraged to be the same (by utilizing a loss on a distance
function between the text vectors), while the negative ones are encouraged to be different.

In this way, the burden of expensive labeling can be relieved. Moreover, it can be used as
an intermediate step between pre-training and fine-tuning to inexpensively align the model
to the target task domain. These properties are especially useful for the “data-hungry”
transformer models.

The models in this class differ mainly in how they construct the positive example pairs.
This can be achieved in many different ways. We will describe them below.

Feature/Vector/Embedding-Level Augmentations These are the modifications to
the sentence in its vector representation space.

Dropout [179] is one of the most popular feature-level augmentation techniques. It was
originally used as a regularization of neural networks to increase the robustness to noise
from the vector space. However, the same can be applied to derive an augmented text
sequence representation.

Popular BERT and RoBERTa pre-trained transformer models already have dropout
layers and require almost no modifications to employ the dropout augmentation. Two
positives are acquired by passing the same sample through the dropout-enabled network
twice [180, 143, 181]. This does not require additional preprocessing and can be applied on
the fly during the training.

Despite the effectiveness reported, dropout augmentation has the disadvantage of being
biased toward sentence length. This was observed in [181]. Two augmented versions of
the same sentence are of the same length and can be easily discriminated against randomly
drawn negatives of varying lengths. Therefore, instead of learning the general sentence
representation to match the same sentence samples, the model now just takes the shortcut
by only comparing their lengths. To counteract this, the authors of [181] added token-level
augmentations in addition to dropout so that the length of positives would be different.
Other authors of [182] also managed to avoid this problem by using negatives produced by
a much higher dropout rate than those used for positives.

Another feature-level (also regarded as token-level) augmentation technique is the shuffle
of tokens. Usually in pre-trained language models, positional information of each sequence
element is brought about by the addition of special positional embeddings to the existing
token ones. As a result, the shuffling of positions can be implemented simply as the shuffling
of position IDs and the corresponding positional vectors.

Similarly to dropout, there is a cutoff augmentation [183]. Dropout can also be consid-
ered as random erasing of weights in L× d text sequence embedding matrix with L tokens
of length d vectors. The token cutoff erases randomly selected rows, while the feature cutoff
erases columns of the L × d matrix. In the work of ConSERT [63] it was found that the
shuffle and token cutoff are the two most effective augmentation strategies, significantly
outperforming the feature cutoff and dropout.

There are more sophisticated approaches to alter embeddings than a dropout randomly
replacing weights with zero values. Specifically, adversarial attacks were shown to be suc-
cessful. They aim to add worst-case perturbations to the input samples. The authors of
[63] used the Fast Gradient Value (FGV) [184] method, which unfortunately relies on su-
pervised loss to compute adversarial perturbations. Other authors of [185] employed the
Fast Gradient Sign Method (FGSM) [186]. Perturbation is obtained by applying the sign
function to the derivative of the model with respect to the input by contrastive loss. The
authors of [185] composed their best augmentation mix as a dropout with FGSM.
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Token-Level Augmentations Language gives us many possibilities to convey almost
the same meaning through similar or very different sequences of words. This can be easily
utilized for augmentation purposes.

Using synonym replacement, random swapping of two consequent words, random in-
sertion and deletion, the so-called Easy Data Augmentation (EDA) the authors of [187]
managed to reduce the required dataset size by half for the same performance in mul-
tiple classification tasks. In contrastive learning experiments for the biomedical relation
extraction task, the authors of [188] found that synonym replacement outperformed ran-
dom swap and random deletion. Meanwhile, one of the first contrastive works for text
[189] showed that back-translation [190] augmentation outperformed the four mentioned
techniques. The authors took a pre-trained BERT [5] and pre-trained it further on the
input text of GLUE [191] tasks in a contrastive fashion, to be later fine-tuned and eval-
uated in GLUE. The resulting CERT model achieved slight improvements in addition to
the regular BERT. CLEAR [192] was also an attempt to improve the regular BERT and
RoBERTa pre-training by jointly using MLM loss and constrastive loss. The authors found
that the different combinations of different augmentation strategies (in particular, substi-
tution, span-deletion, and reordering) favor different improvements for GLUE and various
SentEval tasks. A recent work [185] tried token-level augmentations such as typos, syn-
onym replacement, paraphrasing, and back-translation but found that they underperformed
feature-level ones.

As the popular BERT model is pre-trained with a masked language modeling task, i.e.,
predicting the true masked token behind the special input [MASK] token, the same [MASK]

can also be used to induce augmentations by randomly masking tokens. The mirror-BERT
model of [180] used such random span masking for input augmentation, which, together with
feature augmentation, showed gains over off-the-shelf models in both lexical and sentence-
level tasks, across different domains and different languages.

Token-level augmentations can greatly contribute to existing vector-level ones. Feature-
level augmentations do not affect the length of the text sequence and are therefore suscep-
tible to length bias. ESimCSE [181] showed that simple word repetition augmentation can
effectively counteract it. The authors also tested the insertion of the [MASK] token with
small improvements, while the insertion of stop words slightly decreased the effect.

A better distinction of negatives can also be obtained by token augmentations. The
authors of [92] proposed Bidirectional Margin Loss (BML) to incorporate soft-negative
samples that are generated using a simple rule-based method. According to its dependency
syntax tree, the positive sentence is converted to its negation with correct syntax and clear
semantics. The proposed setup saw improvements in the semantic textual similarity tasks
from SentEval.

One drawback of token-level augmentations is the chance of producing false positives.
It is especially risky in stochastic modifications, such as back-translation, deletion, or in-
sertion, where exact output cannot be controlled. Furthermore, token-level augmentations
are more complicated than feature-level ones, and thus they cannot be performed on-the-fly
during the training and must be prepared in advance.

Positives by Relative Placement Similar to the older idea of skip-thoughts [168], the
placement of sentences in a text can be exploited. In such a setting, text segments near
or overlapping each other in the long text should also be near each other in the sentence
embedding space. Therefore, text parts near the same anchor in the text can be regarded as
positive, while further away as negative pairs for contrastive learning. DeCLUTR [193] for
each document in a mini-batch samples multiple anchor spans. The corresponding positives
are further sampled for each anchor and can be partially overlapping, adjacent, or subsumed
by the anchor. This is accomplished by sampling the anchor span length to be mostly longer
than the positive spans. At the time, DeCLUTR showed improvements in SentEval [194]
transfer tasks in an unsupervised setting. Location exploitation is a simple approach, but
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it has some drawbacks. As the authors used the dataset consisting of documents of at
least 2048 tokens in length, it clearly reveals that sentence placement methods have limited
applications for short text domains. Moreover, random spans of DeCLUTR are subject to
fragmentation in semantics.

Positives by Two Networks The augmented version of the sample can also be con-
structed using two encoders. Different weight initialization and training data order are the
most common causes of fluctuations in neural network performance. Although the perfor-
mance is generally comparable, each model learned differently represents a different local
minimum. Such a subtle difference can act as an augmentation. One of the first such setups
was the CT model [99]. The simple objective required two models to retain similar repre-
sentations for identical sentences while distinguishing their representations from different
ones.

The authors of [86] presented an approach of two BERT models, one fixed and the
other tunable. The authors imposed a contrastive tension between the [CLS] token of the
tunable model and a holistic representation of the fixed one. The latter is aggregated from
all BERT layers, thus encouraging the tunable model to learn to concentrate all the relevant
information to the [CLS] token.

The authors of [195] proposed using multiple diverse positives instead of the usual two.
The authors claim that this increases the probability of “at-least-one” effective positive dur-
ing training. To implement diverse positives, the agreement of two similarity distributions
of samples between two encoder models had to be maximized.

Another setup incorporating two networks can be used for Knowledge Distillation (KD).
In [196], after the regular KD step with the original pre-training task, an additional con-
trastive pre-training was added. The pair of positives for a single text segment consisted
of a representation from the teacher model and another from the student. After the third
stage of fine-tuning on semantic textual similarity tasks, [196] showed that the 110 M model
outperformed the one with 11B parameters.

MoCoSE [185] combines both feature-level augmentations and two branches based on
asymmetric BERT encoders. While the online branch is updated through the loss gradient,
the second, the target branch, is updated by the Exponential Moving Average (EMA).
These discrepancies between the two branches prevented the model from collapsing and
allowed the achievement of competitive results in SentEval.

Although two-network approaches are conceptually similar, they require extra memory
or time, which is a big drawback. Transformer models already require the latest state-of-
the-art GPU with the largest available memory. Techniques such as gradient accumulation
are often used to process large mini-batches sequentially, but in the contrastive learning
approach, the requirement for large in-batch negatives gives additional complexity.

Positives and Negatives from Supervised Data Up to now, we have described vari-
ous augmentation techniques that modify existing unlabeled samples for use in contrastive
learning. However, there are several labeled datasets that can also be turned into positives
or negatives by reusing the label information.

One of the first works to implement this idea was SimSCE [143]. The authors analyzed
six candidate datasets. They found that the Natural Language Inference (NLI) datasets,
SNLI [171] and MNLI [197], together performed the best. The combined dataset contains
sentence pairs in the form of (premise, hypothesis, label), labeled as entailment, neu-
tral, or contradiction, 314k for each class. The SimSCE authors constructed positive pairs
from entailment samples and negatives using contradiction ones. The resulting supervised
approach achieved state-of-the-art results at the time for SentEval tasks. The authors also
tried to incorporate neutral pairs as less weighted negatives but did not observe improve-
ments.
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The authors of [198] note that the use of NLI labels to construct positive and negative
pairs can contradict apparent semantic information. Elements of the negative pair may not
be negative in semantic space. To address this issue, the authors train the PairSupCon
model by incorporating an instance discrimination objective, which is claimed to have an
implicit grouping effect. The objective discriminates both hypothesis and premise sentences
from the positive pair separately from all other sentences in the batch. The authors also
incorporated importance weighting on negatives to facilitate the better effect of hard ones.
In total, the overall loss consisted of two instances of discrimination (one for hypothesis
and the other for premise) with negative weighting and a third cross-entropy predicting
NLI labels. Significant improvements were shown for clustering tasks, while for semantic
textual similarity tasks in SentEval, only moderate gains were shown.

A novel use of NLI dataset labels was implemented in the PairSCL [199] model. First, the
pair of hypothesis and premise sentences from the NLI dataset is passed through an encoder,
and the unified representation of such pair is aggregated by a cross-attention module. Then
a supervised contrastive loss is applied between positive and negative samples. What is
interesting is that positives are regarded as hypothesis and premise pairs from the same
class, i.e., whether contradiction, neutral, or entailment. Pairs labeled in different classes are
considered negatives. In addition to such supervised contrastive loss, an additional cross-
entropy loss is applied that predicts the actual class label. This setup showed improvements
in both the NLI and SentEval transfer tasks.

ST5 [200] adopted the two-stage training strategy. In the first, 2B mined question-
answering data from Community QA sites were used, framing the question and answer into
the positive pair. During the second stage, NLI data were used, similar to SimSCE [143].
Such a more data-rich training allowed the authors to outperform the previous approaches
for the SentEval task. Furthermore, using larger models with up to 11B parameters brought
even further gains.

Supervised datasets are difficult to produce. If the domain of the task in question
differs from publicly available NLI datasets, the easiest solution is to use unsupervised
methods. Otherwise, labeled sources are indispensable. Exploiting multiple datasets and
label information can make the benefits even more obvious.

Direction of Contrastive Learning for NLP The classic setup of contrastive learning
is becoming more nuanced. The usual setup of two positives and multiple in-batch negatives
(just any other sentence) is not perfect. As a result, the exact distance to the negatives
or between the positives varies, and learning produces only a coarse approximation. The
distinction between soft, hard, and weighted negatives begins to arise [92, 143, 198], as well
as the use of multiple positives [195]. The classic NT-Xent (also called InfoNCE) loss is
thus often modified or additional losses added to incorporate finer training signals. The
desire to scale models and datasets is also observed, as in [200], yet we think that more
memory-efficient approaches, as in [196], should be prioritized. Nonetheless, contrastive
learning currently produces state-of-the-art sentence embeddings.

3 Methods

Our extensive literature review allowed us to see the big picture of the sentence embedding
research.

Currently, the evolution of models for sentence embeddings and related NLP tasks is
settled at transformers. In this work, we use existing models to source the raw, token-level
embeddings. In Section 3.2, we describe the main model that we use in detail, some baselines
we used for comparisons, as well as some of our original extensions. In particular, in T1–T4
models, we extend original prompting templates by incorporating more than one [MASK]

token. Next, we present a new Avg. model where we derived sentence embeddings first by
averaging tokens in different contexts and then by averaging the tokens themselves. Finally,
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we present our BERT + Avg. model, which combines both contextual and multiple-context
averaged representations, all derived from the same BERT transformer model.

In addition to these extensions, we found two main directions that can be used to im-
prove sentence embeddings from transformer models: token aggregation and post-processing
techniques. Note, however, that our main contribution here is not the methods, as we reuse
most of them from the existing works, but the combinations of them on the transformer
model and extensive evaluation on multiple tasks. We thoroughly describe the techniques
used (and minor extensions) for token aggregation in Section 3.3 and post-processing of
embeddings in Section 3.4.

We have noticed that most works confine themselves to a small subset of evaluation
tasks, which limits their results’ comparability to others. Papers from top conferences
always include classification tasks on top of semantic textual similarity, which is usually
the only evaluation. In this work, we evaluate sentence embeddings on three different types
of tasks: semantic textual similarity, downstream classification, and clustering. We present
these tasks in Section 3.5.

We now proceed with the formal definition of the problem we address in this work.

3.1 Problem Formulation

We are given a text sequence s0, which was tokenized into N individual pieces (i.e., tokens)

t1 t2 . . . tN , (1)

and a model representing each token as a d-length vector v ∈ Rd in each of its L layers. We
also use static token embeddings denoted as the -1st layer and input embeddings denoted
as the 0th layer. They are sums of token, segment, and position vectors, with layer nor-
malization applied on top. Therefore, we obtain the following 3-dimensional representation
space R(L+2)×N×d:

v−1
1 v−1

2 . . . v−1
N

v0
1 v0

2 . . . v0
N

v1
1 v1

2 . . . v1
N

...
...

. . .
...

vL1 vL2 . . . vLN

. (2)

We want to find such an aggregation function f that the ((L+ 2)×N × d)-dimensional
output from a chosen transformer model would be reduced to as meaningful a d-dimensional
vector as possible in Rd.

As a baseline for the bert-base-uncased model with L = 12 layers, we consider the
average over the N tokens in text and over the first and last layers.

ffirst+last(s0) =

N∑
n=1

v1
n + v12

n

2N
. (3)

Additional Context Data

Generally, a corpus has S number of text samples. Therefore, other text sequences can also
be used to derive the representation of the target sentence. In this way, our aggregation
function f operates on an (S × (L+ 2)×N × d)-dimensional output from the model. S can
also be enlarged by using additional datasets. In particular, we used Wikitext-2 from [201].
This can be used for various post-processing techniques such as centering, standardization,
PCA, and others, where transformations are learned on corpora other than the target
corpus.
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3.2 Models

We use multiple text representation methods, focusing mainly on BERT-based ones. Prompt-
ing method T4, Averaged BERT (Avg.), BERT + Avg., B2S-100, and Random embeddings
(RE) are our proposed models or modifications, while BERT, T0, and B2S are plain adap-
tations of existing ones. We tested token aggregation and sentence representation post-
processing techniques on all eight models. We will describe them in more detail below.

3.2.1 BERT

BERT is a very popular transformer model. When first introduced in [5], it spectacularly
outperformed multiple other models on a wide range of tasks.

BERT is based on the original transformer architecture of [2]. The main difference is that
instead of sequence-to-sequence workings and encoder–decoder structure, it is composed
only of an encoder side. This allows it to solve multiple classification and regression tasks,
maintaining the same pre-trained base while only changing the classifier heads on top.

In this work, we use the BERT version called bert-base-uncased, a 110 M parameter
model containing 12 layers (blocks) and working with lowercase text. We employ the
Hugging Face implementation [202] of BERT. It was pre-trained on BooksCorpus (800 M
words) [203] and English Wikipedia (2500 M words) datasets, which take 13 GB of plain
text combined. The model was trained for 40 epochs (or passes through the corpus). Back
then, the training time, model size, and data used were considered to be very large, yet
now they are only a small fraction of what the current state-of-the-art models use.

Input Input to the BERT encoder consists of token, positional, and token type embed-
dings. BERT uses WordPiece tokenization [204]. Splitting less frequent words into sub-
words (e.g., “transformer” → “transform” and “##er”) rather than splitting everything
on word boundaries allows one to reach a manageable vocabulary size of 30,000 tokens.
BERT, like other transformer models, perceives input as a set; therefore, order information
must be supplied in addition. To achieve this, additional positional embeddings are used,
with a unique value for each position in a token sequence and feature dimension. Token
type embeddings allow the model to distinguish between the two (if there are two) separate
sentences (e.g., 〈 Question, Answer 〉) in one token sequence. Overall, token, positional, and
token type embeddings are added, and then layer normalization [205] and dropout [206] are
applied. This results in the input to the BERT model blocks (for simplicity, we will call
them layers).

There are 3 special tokens. [CLS] starts every token sequence, [SEP] ends token se-
quences and acts as a separator in a pair of sentences, and [MASK] is used during pre-training
to mask some percentage of the input tokens at random for the model to predict (known
as a “Cloze” task [207]). The [CLS] token is also used for the next sentence prediction
task—predicting whether the second sentence in a pair actually follows the first one in the
training dataset or is a random one—the second unsupervised pre-training task of BERT.

Transformer Block Each transformer block (or layer) has two sublayers. The first is
a multi-head self-attention mechanism and the second is a position-wise fully connected
feed-forward network. The output of each sublayer Sublayer(x) is added to the input x

that bypasses the sublayer through residual connection [208] and the resulting signal ends in
layer normalization [205], LayerNorm(x + Sublayer(x)) becoming the input to the second
sublayer or the next layer.

Multi-Head Self-Attention An input tensor X ∈ Rb×t×f with b samples in a batch,
t tokens, and f features is first linearly projected into queries Q ∈ Rb×tQ×h×fQ , keys
K ∈ Rb×tK×h×fK , and values V ∈ Rb×tV ×h×fV tensors with h heads using learned weights.
Note that in the standard case, t = tQ = tK = tV and f = hfQ = hfK = hfV . Then,
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for each sample text in a batch and each head dot, products between feature vectors of
every combination of query and key tokens are calculated, resulting in an attention tensor
(QK) ∈ Rb×h×tQ×tK . It is then scaled by dividing it by

√
fK , and softmax is applied along

tK so that all the dot products for any given query token and all the key tokens would
sum to 1. Now, a dot product is calculated again for the probability-like scores and values
tensor, resulting in a weighted selection of V, with the form of Rb×h×tQ×fV . Finally, the
heads are concatenated back and a linear transformation layer WO ∈ RhfV ×f is applied.
The resulting tensor is the same shape as the input one: MultiHead(X) ∈ Rb×t×f .

For a more detailed explanation of the BERT and transformer architecture, please read
the original papers [5, 2].

3.2.2 Prompting Method (T0, T4)

The classical use of the BERT model involves two steps: (1) a general pre-training on
a very large corpora with unsupervised tasks, and (2) a supervised fine-tuning step on a
small target task dataset. The first step is expensive, it requires a lot of data, time, and
computing resources, but it is carried out only once. Weights that are produced in an
unsupervised way contain a lot of useful representations for the fine-tuning to only perfect
them.

Prompt-based methods take advantage of the first step and can completely avoid the
fine-tuning stage. The idea is to frame the target task in the original pre-training format, for
which the model is essentially optimized. To extract a general sentence representation, the
authors of [15] proposed using “This sentence: "[X]" means [MASK]” template (which
we will call T0), where the target sentence is placed instead of [X] and the final layer
representation of [MASK] is used. This way, the model itself tries to predict the meaning
of a given sentence, and we can extract prediction weights before they are turned into
probabilities over tokens.

During initial experiments, we manually searched for other more complicated templates
than T0, presented in Table 1. We will also use the T4 template, which is much longer and
has 3 [MASK] tokens that have to be averaged.

Table 1: Manual template search by adding additional text and [MASK] ([M]) tokens.
Target sentences are inserted into the place of [X]. Only the average of 12th layer [M]
representations are used. Bolded results are the best.

No. Template STS Clust. Class.

T0 This sentence: ”[X]” means [M]. 63.4 45.5 78.7
T1 This sentence: ”[X]” means [M][M]. 63.4 46.6 78.6
T2 This sentence: ”[X]” means ”[M][M]” and is about [M]. 70.4 52.8 78.3
T3 This sentence from the paraphrase dictionary: ”[X]” means

”[M]”, which is about [M].
69.6 54.2 77.4

T4 This sentence from the dictionary: ”[X]” means ”[M]” and is
about [M], which is a synonym for [M].

69.3 54.2 76.8

3.2.3 Averaged BERT (Avg.)

We follow the idea of [53] to average the representations of a token in its different contexts
to acquire its static embedding. Yet, we take it even further and construct vectors for
sentences by again averaging such static token embeddings over the sentences.

We construct static tokens using the Wikitext-103 [201] dataset and use the same tok-
enization as of BERT version bert-base-uncased. For each of all 28,807 tokens occurring
in the Wikitext-103, we sum all vectors produced by the BERT model (which differ due
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to different contexts) and divide them by their count. Note that some tokens occur very
often, while others are rare (for example, the most frequent, “the”, is repeated 6,470,356
times). The process is repeated for every BERT layer, as well as combinations of layers, so
that we can observe the performance dependence on this factor as well.

Combining Averaged BERT and Regular BERT (BERT + Avg.) We also wanted
to see how sentence embeddings derived from static averaged BERT tokens can contribute
to the original BERT representations. Therefore, we averaged sentence embeddings from
the two methods mentioned above.

3.2.4 BERT2Static (B2S, B2S-100)

There are more advanced distillation methods than simple BERT token averaging. For
example, the authors of [49] trained static word vectors using BERT’s contextualized rep-
resentations. They adapted the Sent2Vec [48] model for words and trained it to predict
the word given the context element of it by the contextual representation of the BERT
model. This way, the authors obtained vectors for the 750,000 most frequent words. They
also showed that this approach results in vectors that perform better than existing static
embeddings trained from scratch, while still enjoying a small memory and computational
footprint.

In our experiments, we used the bert 12layer para model (downloaded from https:

//github.com/epfml/X2Static, provided in [49], accessed on 1 May 2023), which was
trained from the contexts of a paragraph rather than only a sentence. We evaluated two
versions of BERT2Static: a regular one (B2S) and one with the 100 most frequent words
filtered out (B2S-100).

3.2.5 Random Embeddings (RE)

Instead of using a complex model to derive embeddings for words, we also tested random
vectors as token embeddings. More specifically, we assign each token a random vector
drawn from the normal (Gaussian) distribution, centered at 0 with 0.1 standard deviation.
To facilitate better comparisons with the BERT model, we use the same tokenizer from
the BERT version bert-base-uncased and make the vectors the same 768-size length.
The whole sentence representation is then computed as the average of its constituent token
vectors.

3.3 Aggregating Tokens

Every text contains multiple tokens, each with a corresponding embedding vector. To obtain
one vector for the whole text out of the many, usually, a simple average is calculated, as
discussed in Section 2.1. We use it as a baseline here for multiple methods.

We investigate different methods of token weighting and filtering based on their fre-
quencies. In classical bag-of-words approaches, it is usually accounted for with the tf-idf
weighting. We, however, use only idf weighting, because the same tokens in BERT cannot
be simply counted due to different contextualization. Given a dataset with N documents
and document frequency dft, defined to be the number of documents in the given dataset
that contain a token t, we calculate idft for a token t as

idft = log
N

dft
. (4)

To account for long/short text differences, we scale idft token weights for each text so that
they would sum up to 1. This way, to calculate the average embedding for a given text, one
need only sum up the weighted vectors. We calculate two inverse document frequencies:
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idfWt for the Wikitext-2 dataset from [201] and idfTt for all samples from the given target
task.

We also adopt the method in [63, 15] to drop the most frequent tokens. We choose 33 to-
kens, which were depicted in the appendix of [15]. Following that article, we also investigate
dropping punctuation and subword tokens. We found that dropping all three parts—the
most frequent, punctuation, and subword tokens—has the best effect, and following the
original work, we name such token aggregation as with removed biases (“-biases”).

3.4 Post-Processing Embeddings

It is common in machine learning to standardize datasets, as most methods are designed
to work best with normally distributed data: Gaussian with zero mean and unit variance.
Yet it is not that trivial, as data may not follow a smooth distribution and may contain dis-
turbing outliers. In the context of the best practices reviewed in Section 2.2, we investigate
the following processing methods of embeddings.

3.4.1 Z-Score Normalization

The most basic is the standard score, also called the z-score. It is the number of standard
deviations σ by which the value x of a raw score is higher than or below the mean value µ
of the raw scores of all samples. We normalize our vectors to have z-score = 1:

z =
x− µ
σ

. (5)

3.4.2 Quantile Normalization to Uniform Distribution (quantile-u)

This technique works by making two distributions identical in statistical properties, thus
reshaping given data values according to some known distribution function. In our case, we
found that the uniform distribution worked very well as a reference. For a more detailed
description of the technique, see [209].

We also tried other methods that are more robust to outliers; however, we found their
performance marginally below quantile-u. This includes quantile normalization using a
normal distribution and RobustScaler (as it is called in the scikit-learn preprocessing library
[210], which we used). The latter method removes the median value instead of the mean
and scales the data according to the selected quantile range.

3.4.3 Whitening

It is a transformation that produces uncorrelated components, each with a variance of 1.

3.4.4 All-But-The-Top (ABTT)

It is a method introduced in [118]. We start with the given embedding matrix A ∈ Rb×f of
b sentences, each with f features. First, it is centered by its mean µ ∈ Rf into Ã ∈ Rb×f .
Using the centered Ã, and given the number d of the top principal components to remove,
we then calculate PCA components U ∈ Rd×f . Now, we project our data into these
components to acquire APCA ∈ Rb×f :

APCA
bf =

∑
d

ÃbfUdf . (6)

The final processed embedding matrix will be:

A′ = Ã−APCA. (7)

The only difference of our approach from the original authors of [118] is that instead of post
processing words, we use all-but-the-top to post-process documents.
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3.4.5 Normalization

We also experiment with normalization: scaling individual sentence vectors to have a unit
norm.

3.4.6 Learning Post-Processing

Some target task datasets can also be too scarce to calculate accurate statistics, such
as mean, standard deviation, or others, used in post-processing. Therefore, instead, we
also experiment with learning these weights on the Wikitext-2 dataset. We indicate such
techniques with a superscript ·W .

3.5 Evaluation

We evaluate the investigated methods on multiple clustering, semantic textual similarity,
and classification tasks.

3.5.1 Clustering Tasks

We assess the performance on 6 benchmark datasets for short text clustering. Compared to
the usual ones, short datasets impose a challenge due to the weak signal caused by sparsity,
which is a big problem for classic count-based approaches such as bag-of-words or tf-idf.
Table 2 provides an overview of the main statistics, and the details of each dataset are as
follows.

Table 2: Dataset statistics for the short text clustering datasets. N is the number of text
samples, C is the number of clusters, L/S is the imbalance number defined as the size
of the largest class divided by that of the smallest class, ‖V ‖ is vocabulary size, Len is
the average number of tokens in each text sample, Alpha is the percent of tokens that
are alphabetic (all token characters must be defined in the Unicode character database as
“Letter”, while tokens with numbers, punctuation, or BERT continuation tokens such as
“##ing” are excluded). Statistics with plain word tokenization are marked with “W” and
with bert-base-uncased model tokenizer as “B”.

Dataset N C L/S
‖V ‖ Len Alpha, %

W B W B W B

agnews 8000 4 1 21,062 16,140 23 26 100 86
biomedical 20,000 20 1 18,888 9326 13 20 98 64
googleTS 11,109 152 143 19,508 14,763 28 33 100 85
searchsnippets 12,340 8 7 30,643 16,334 19 24 93 77
stackoverflow 20,000 20 1 22,909 7332 8 12 87 71
tweet 2472 89 249 5098 5091 9 11 100 81

Agnews It is a subset of news titles [211], which contains 4 topics selected by [212].

Biomedical It is a subset of PubMed data distributed by BioASQ ( http://participants-
area.bioasq.org/, accessed on 1 May 2023), where 20,000 paper titles from 20 groups are
randomly selected by [213].

GoogleTS It contains titles and snippets of 11,109 news articles related to 152 events
[214]. We use the full version of the dataset, which includes both titles and snippets, named
GoogleNews-TS in [212].
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Searchsnippets It is extracted from web search snippets and contains 12,340 snippets
associated with 8 groups [215].

Stackoverflow It is a subset of the challenge data published by Kaggle (https://www.
kaggle.com/competitions/predict-closed-questions-on-stack-overflow/data, ac-
cessed on 1 May 2023), where [213] selected 20,000 question titles associated with 20 dif-
ferent categories.

Tweet It consists of 89 categories with 2472 tweets in total [214].

We perform clustering by running k-means with the scikit-learn [216] package and re-
ported the clustering accuracy, computed using the Hungarian algorithm [217] and aver-
aged over 10 independent runs (we used the codebase from https://github.com/amazon-

science/sentence-representations and downloaded clustering datasets from https://

github.com/rashadulrakib/short-text-clustering-enhancement/tree/master/data,
both were accessed on 1 May 2023).

3.5.2 Semantic Textual Similarity (STS) Tasks

STS assesses the degree to which two sentences are semantically equivalent to each other.
A single sample consists of two sentences and a score ranging from 0 for no meaning overlap
to 5 for meaning equivalence. The semantic textual similarity shared task has been held
annually since 2012 up to 2017 [218, 219, 220, 221, 222, 223] and formed STS12-STS17
datasets. A total of 8628 carefully collected samples from these contests formed the STS
benchmark [223]. Table 3 shows details of the STS datasets, including SICK-Relatedness
[224] and STS-B test sets, which we also use. Similarly to [145], we also add (STR) [225],
a recent semantic relatedness dataset created by comparative annotations.

STS is a very popular choice for evaluating textual embeddings in an unsupervised
way. Without any fine-tuning, one can calculate the distance (usually cosine) between
two vectors of two sentences, which should correlate to the target equivalence score. It
is so widely adopted that almost all work on semantic representations assesses the model
performance on this task.

We follow the STS evaluation settings from [143]. First, the evaluation is kept unsu-
pervised by not applying any additional regressors; cosine similarity between embeddings
in a pair is taken directly as a model score for similarity. To find the degree of correlation
between the annotated and model-given labels, Spearman’s rank correlation is used because
it measures the rankings instead of the actual scores. Finally, for annual STS challenges,
we concatenate all subsets and report the general Spearman correlation for that year (re-
ferred to in [143] as “all”). As we used the SentEval toolkit [194], we had to implement
concatenation ourselves since it only had “mean” and “wmean” settings available.
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Table 3: Dataset statistics for STS and classification tasks. N is the number of text samples,
C is the number of clusters, L/S is the imbalance number, defined as the size of the largest
class divided by that of the smallest class (for STS tasks, the two classes are binned to 1
point label value length ones from the highest and lowest sides), ‖V ‖ is vocabulary size,
Len is the average number of tokens in each text sample, Alpha is the percent of tokens
that are alphabetic. Statistics with plain word tokenization are marked with “W” and with
bert-base-uncased model tokenizer as “B”. For MRPC, SICK-R/E, STS-B, and STS
tasks, statistics are calculated for tokenized and then concatenated sentences in each pair.

Dataset Split N C L/S
‖V ‖ Len Alpha, %

W B W B W B

STS tasks

STS12 3108 5.2 8127 7802 25 28 83 77
STS13 1500 0.7 5152 5141 20 21 88 82
STS14 3750 1.6 9117 8613 21 23 86 80
STS15 3000 0.9 7364 7185 23 24 89 85
STS16 1186 1.2 3971 4175 26 28 87 83
STR 5500 1.0 22,392 12,883 25 32 83 76

Binary classification

MR 10,662 2 1.0 20,325 13,802 22 26 84 76
CR 3775 2 1.8 5675 5221 20 22 84 80
SUBJ 10,000 2 1.0 22,636 15,912 25 28 85 78
MPQA 10,606 2 2.2 6239 6248 3 3 97 88

SST2
train 67,349 2 1.3 14,816 11,570 9 11 88 78
dev 872 2 1.0 4339 4542 20 23 85 76
test 1821 2 1.0 7053 6824 19 23 85 76

MRPC
train 4076 2 2.1 16,112 12,061 44 50 81 75
test 1725 2 2.0 10,092 8471 44 50 82 75

Fine-grained classification

SST5
train 8544 5 2.1 16,579 12,395 19 23 84 75
dev 1101 5 2.1 5038 5168 19 23 85 76
test 2210 5 2.3 7929 7478 19 23 85 76

TREC
train 5452 6 14.5 9437 8492 10 11 87 81
test 500 6 15.3 1100 1247 7 8 85 79

SCICITE
train 7320 3 4.4 27,775 13,603 31 40 100 77
dev 916 3 4.4 7625 6918 31 40 100 78
test 1861 3 3.8 12,609 9217 31 41 100 77

SICK-E/R
train 4500 3/. . . 3.8/3.6 2258 2277 19 20 99 96
dev 500 3/. . . 3.8/5.0 1122 1172 20 20 99 96
test 4927 3/. . . 3.9/3.9 2271 2291 19 20 99 96

STS-B
train 5749 . . . 1.3 12,430 10,792 22 25 86 80
dev 1500 . . . 0.7 6542 6511 26 28 85 80
test 1379 . . . 1.1 4888 4921 22 24 85 81
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3.5.3 Downstream Classification Tasks

Differently from STS, these tasks are evaluated in a supervised way. Following the SentEval
[194] benchmark suite, the commonly used evaluation protocol is to train a logistic regression
or an MLP classifier with a cross-validation setup on top of the frozen representations, and
the testing accuracy is used as a measure of the representation quality. We went after the
logistic regression classifier and the 10-fold cross-validation scheme, the setting which is
the most commonly reported in the literature. We evaluated various binary, ternary, and
fine-grained classification as well as regression tasks. A more detailed description of each is
presented below, while statistics are presented in Table 3.

Binary Classification It includes sentiment prediction from Stanford Sentiment Tree-
bank dataset SST2 [112], movie reviews MR [226], and customer product reviews CR [227].
In SUBJ [228], binary subjectivity status is labeled for sentences from movie reviews and
plot summaries, and in MPQA [229, 230], phrase-level opinion polarity from news articles
is predicted. The last is MRPC [231], the Microsoft Research Paraphrase Corpus, from
parallel news sources for the paraphrase detection task.

Ternary Classification SCICITE [232] is a domain-specific classification task that as-
signs one of three intent labels (“background information”, “method”, “result comparison”)
to sentences collected from scientific articles citing other articles. Meanwhile, the SICK-E
[224] dataset has labels for sentence pairs as “entailed”, “contradiction”, or “neutral”.

Fine-Grained Classification It includes SST5 [112], a 5-level sentiment analysis dataset,
and TREC [233], comprising classification of 6 types of questions. We also evaluate regu-
lar semantic textual relatedness and similarity tasks SICK-R [224] and STS-B [223] with
classification, by splitting the real-valued similarity targets into 5 discrete class labels. For
example, a [0,5] score of 3.6 goes to class 3 with weight 0.4 and also to class 4 with weight
0.6.

3.5.4 Isotropy

We use the IsoScore [117] metric to measure the uniformity of the utilization of the embed-
ded space. As shown by the authors of [117], IsoScore has stronger properties than other
isotropy measures.

For each sentence embedding method, we calculated IsoScore for the Wikitext-2 dataset
from [201]. We split the dataset into individual sentences (now samples) and omitted texts
with less than 10 characters.

3.5.5 Alignment and Uniformity

Explaining the success of contrastive methods, the authors of [144] proposed using alignment
and uniformity properties to better quantify the quality of representations. Alignment is
calculated between semantically related positive pairs and therefore is an expected distance
between embeddings of the paired instances:

Lalign(f) = E
(x,y)∼ppos

[
‖f(x)− f(y)‖2

]
. (8)

Uniformity is computed using representations of the whole space:

Luniform(f) = log E
(x,y)

i.i.d.∼ pdata

[
e−2‖f(x)−f(y)‖2

]
. (9)

Smaller values of both alignment and uniformity indicate better quality of the representa-
tions.
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As a distribution of positive pairs ppos, we used STS-B task training split pairs with a
similarity of 5.0, and for pdata, we used sentences from all pairs.

4 Results

Here, we present the results of our various experiments outlined in Section 3.

4.1 Token Aggregation and Post-Processing Techniques

The results of best-performing token aggregation and embedding post-processing techniques
are presented in Table 4. The results here are averaged over all the different tasks in the
class. See Appendix A for the individual results.

We see that both aggregation and post-processing methods have a great impact on STS
and clustering performance. For semantic textual similarity tasks, the best model was
improved from 62.3 to 71.6 average Spearman correlation, while for clustering, the best
model was improved from 59.2 to 64.8 average accuracy.

Our techniques can even improve the dedicated SimCSE model [143], which was fine-
tuned on NLI data. Its main strength lies in semantic textual similarity tasks, where it
leads with over 10% difference. However, for clustering tasks, its average accuracy is similar
to the other evaluated models at 59.8% and improves up to 64.0%, if we apply the best-
performing techniques. This showcases a general tendency that the top-performing models
are very good only in a narrow subset of tasks and highlights the importance of our more
general methods.

For maximum performance, usually, both aggregation and post-processing techniques
must be used. As an example, sentences placed within the T4 template with no techniques
applied have a 62.3 average Spearman correlation. With a better aggregation method of
idfTt , it is pushed up to 69.2, while only using quantile-u post-processing gives 67.3 (see
Table 5 with only post-processing techniques applied). However, a combined effort of both
idfTt and quantile-u gives the average Spearman correlation score of 71.6.

Still, the improvements from both aggregation and post-processing do not exactly add
up linearly. This indicates that the improvements to representations of this type may
saturate below the perfect scores.

We considered many post-processing techniques for sentence vectors and show the per-
formance of the most popular and best-performing ones in Table 5 separately. Indeed,
almost every method somehow improves the average Spearman correlation for STS tasks.
For all-but-the-top (abtt), we varied the number of components to remove up to a hundred
but settled on removing only the first two, as it was slightly better than the rest. Although
highly credited in the literature, abtt-2 still obtained smaller scores than the others. Plainly
averaging the token representations, the highest scores for both STS and clustering tasks
were achieved using quantile-uniform normalization. We would also like to mention the
simple normalization of vectors to the unit length, which was often beneficial for cluster-
ing tasks, and whitening normalization, which was learned on Wikitext-2 dataset, and was
favorable with the random embeddings model. We trained other post-processing methods
on Wikitext-2 too, yet they resulted in similar or slightly smaller scores.

Unlike unsupervised ones, classification tasks do not benefit from the two representation-
shaping techniques. There is only negligible improvement for classification tasks, when
the biases (punctuation, most frequent, and subword tokens) are eliminated. Otherwise,
performance is only decreased.

This result is logical because similarity or clustering tasks are carried out with the
resulting text representations directly, while the classification is a supervised task learned
on top. In the first case, the most informative components of the representations must
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be present in the largest principal components (i.e., constitute most of the variance in the
data) for high scores, while the supervised logistic regression classifier can learn to extract
them from the small principal components or ill-shaped representations on its own.

4.1.1 Avg. versus B2S and B2S-100

An interesting result, as seen in Table 4, is the comparison of simply averaged BERT tokens
from many contexts (the Avg. model) and word vectors from a specially trained Word2Vec-
style model BERT2Static (the B2S model) using the same BERT contexts, as described in
Section 3.2.4. If no token aggregation and post-processing techniques are used, B2S is of
similar performance in STS tasks (with average Spearman correlation of 56.7 versus 56.4),
worse at clustering (with average clustering accuracy of 53.8 versus 55.2), and comparable
in classification tasks (with average B2S accuracy of 76.9 versus 77.3) to the Avg. model.
As we can see, the task performance differences are very small.

Apart from training, the second main difference between the Avg. and B2S models is
tokenization. The Avg. model uses sub-word tokens, the same as BERT (tokens of which
it averages), while B2S models use a vocabulary of the full set of the most frequent words,
20 times the size of the BERT’s. Due to this discrepancy, token aggregations for BERT
and B2S models are applied differently, as idf statistics for both tokenizations are different;
also, B2S does not have the equivalence of biased tokens such as BERT. However, it is very
straightforward for B2S to filter out (do not use during averaging) a portion of the most
frequent words. During our experiments, we varied this number and found that removing
the 100 most frequent words works best, which improved the average Spearman correlation
of STS tasks from 56.7 to 60.6 and the average accuracy of clustering tasks from 53.8 to
55.3 compared to full B2S, both with plain token averaging and no post-processing applied.

Despite the additional option for B2S to remove the 100 most frequent tokens, using
additional token aggregation and post-processing techniques allows our simple Avg. model
to surpass both B2S and B2S-100 (see Table 4). Note that the removal of the most frequent
words for B2S works in a similar way to weighted token aggregations or post-processing,
the gains are not additive. Now the best average STS Spearman correlation score becomes
69.5 for Avg. versus 66.4 of B2S and the best average clustering accuracy of 62.2 for Avg.
versus 57.2 of B2S-100. Additional techniques here helped a much simpler Avg. model
outperform a much more complex learned B2S.

The success of such a simple Avg. model inspired us to seek further improvement by
combining it with the parent BERT model. For the combined BERT + Avg. model results,
please see Section 4.3.

4.1.2 BERT versus Random Embeddings

The most dramatic increase in performance due to the two techniques is observed for the
model of random embeddings. For STS tasks, the average Spearman correlation rises from
50.3 to 66.4, while for clustering tasks, it increases from 36.3 to 49.5. Although accuracy
for the latter tasks is still very low, for STS, it is just a mere 3.4 points below what BERT
managed to accomplish with both techniques applied.

If we were to look at the detailed performance on individual tasks in Appendix A.1,
we would find several where random embeddings with the help of the two shaping tech-
niques score higher than the also-shaped BERT representations. For STS14 (Table 8), it
is 68.8 versus 68.3 Spearman correlation, while for the googleTS (Table 16), stackoverflow
(Table 18), and tweet (Table 19) datasets, the clustering accuracy is, respectively, 69.5 vs.
68.5, 70.6 vs. 59.9, and 58.5 vs. 55.1. This may indicate a smaller complexity of these
particular datasets, where the task can largely be solved based on a small set of keywords.
Also, if the texts do not contain the natural language of the type the BERT was pre-trained
on (e.g., they contain code), the model cannot properly contextualize the tokens, and the
random embeddings without contexts work better. Yet it is important to note that it

33



is achieved only with the help of aggregation and post-processing methods on top of the
random embeddings.

The largest clustering accuracy difference between BERT and random embeddings is for
the agnews and searchsnippets datasets, with the best scores of 86.8 versus 43.4 and 82.9
versus 36.6, respectively. We think that the observed performance gap may be related to the
vocabulary and text sizes of the datasets. Stackoverflow and tweet datasets, with random
embeddings ahead of the BERT, have the smallest vocabulary sizes of 7332 and 8091 (see
Table 2), while agnews and searchsnippets have the largest vocabulary sizes of 16,140 and
16,334 unique tokens, respectively. Because random embeddings rely only on distinctness
of tokens, with the increased amount of them, the probability of having exactly the same
keywords in two texts drops. BERT embeddings having non-identical but semantically
similar tokens and similar representations helps in this case.

Having shorter text lengths (average text sizes of 12 and 11 for stackoverflow and tweet,
respectively, versus 26 and 24 for agnews and searchsnippets, respectively) may also help
the random embeddings, because they do not average away so easily, and there is less
context to consider.

In contrast, other static models have much more comparable scores. For example, the
Avg. clustering accuracy is 83.8 (agnews) and 74.2 (searchsnippets).

4.1.3 Isotropy

Many post-processing methods have previously been proposed to improve the isotropy of
representations. It was argued that representations from the BERT model fall into the
narrow cone and, therefore, are anisotropic. Thus, by raising isotropy, one can improve
regular task performance.

We calculate the IsoScore isotropy metric on the Wikitext-2 dataset after applying
various post-processing and token aggregation methods for multiple models. We exclude
whitening post-processing, as it always produces representations with the IsoScore at the
maximum of 100%, just due to its working principle. Then, we compare the isotropy
score to the STS, clustering, and classification task performance by calculating the Pearson
correlation coefficient. For semantic textual similarity tasks, results are shown in Figure 1,
and for clustering tasks, results are shown in Figure 2.

For each method, the baseline IsoScore is very low: always below 5%. After apply-
ing weighted token aggregation techniques or post-processing, it is always increased. The
smallest improvements of up to 7-8% score are observed for templated models T0 and T4,
while the highest, over 80%, are for random embeddings. For other models, the IsoScore
reaches around 17%.

Why is the IsoScore of random embeddings improved so much compared to the other
models? The answer may be related to the inner workings of RE. Once we generate the
random embeddings, these token-level representations have a maximum possible isotropy.
The RE model represents text sequences as averages of these vectors; thus, isotropy going
from the token level to the document is reduced. However, token aggregation and post-
processing techniques mitigate this isotropy loss, allowing for document embeddings to
regain most of it back from the token-level ones. Other models start with already low
isotropy for token-level representations and thus have less space to improve it.

IsoScore Correlation with Task Performance Six out of eight models have a mod-
erate correlation (more than 54%) between Isoscore and the average Spearman correlation
of semantic textual similarity tasks (see Figure 1). For clustering (see Figure 2), it is
less apparent, with only four models reaching moderate Pearson correlation. However, for
both STS and clustering tasks, the best score for each model is always reached by some
improvement of IsoScore, compared to the isotropy score of the plain averaging setup.
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Figure 1: Relation between average Spearman correlation for STS tasks and IsoScore of
Wikitext representations for each model. Pearson correlation coefficients are shown.

In contrast, the classification does not improve with token aggregation and post-processing
techniques; therefore, we do not observe correlation (and do not show it here).
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Figure 2: Relation between average clustering accuracy and IsoScore of Wikitext represen-
tations for each model. Pearson correlation coefficients are shown.
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Table 4: Effect of different token aggregation and post-processing methods on multiple text
embedding models. Both correlation and accuracy scores range from 0 to 100 (from the
worst to the best). We also added results for SimCSE-BERT model [143], which is fine-
tuned on NLI data supervision. The best result for each model is bolded, while underlined
results are the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

Avg. Spearman correlation (%) of STS tasks

avg. 61.3 62.3 61.3 61.4 56.4 56.7 60.6 50.3

idfWt 67.8 67.4 69.2 69.3 66.9 66.1 65.4 66.4
+ zscore 68.6 68.1 69.8 70.6 69.5 66.4 65.9 66.4

idfTt 67.4 69.2 68.7 69.0 67.5 56.7 60.6 64.9
+ quantile-u 69.5 71.6 68.9 69.5 68.4 56.2 61.0 63.0

-biases 64.7 66.0 68.2 69.3 67.3 54.1 57.5 63.7

[MASK] 63.4 69.3
+ quantile-u 65.6 70.5

SimCSE performance: 81.5

Avg. accuracy (%) of clustering tasks

avg. 53.5 55.0 57.0 59.2 55.2 53.8 55.3 36.3

idfWt 53.0 53.0 55.2 57.1 53.7 53.0 53.7 44.3
+ normalize 54.3 54.4 58.0 57.9 54.1 55.8 56.1 49.5

idfTt 53.1 57.6 60.7 62.5 58.7 53.8 55.3 42.8
+ quantile-uW 57.6 60.0 63.1 64.4 60.2 54.6 56.0 44.4
+ normalize 55.5 57.6 63.4 64.8 59.8 55.5 57.2 47.0

-biases 54.3 56.2 61.1 62.2 61.6 52.6 54.1 40.7
+ normalize 54.4 56.3 62.4 63.4 62.2 54.4 56.8 44.6

[MASK] 45.5 54.2
+ quantile-u 44.4 54.9

SimCSE performance: 59.8 and 64.0 (avg. + quantile-uW , first + last layers)

Avg. accuracy (%) of classification tasks

avg. 80.5 79.9 79.9 79.7 77.3 76.9 75.1 69.5
idfWt 73.1 67.1 78.3 77.9 75.3 76.8 74.1 67.6
idfTt 80.1 79.7 78.9 78.4 76.1 76.9 75.1 68.1
-biases 80.1 79.9 80.1 79.8 77.2 76.3 74.2 70.3
[MASK] 78.7 76.8

SimCSE performance: 86.5
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Table 5: Performance of post-processing with plain token averaging. abtt-2 is the ABTT
method with top 2 principal components removed. The best result for each model is bolded,
while underlined results are the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

Avg. Spearman correlation (%) of STS tasks

avg. 61.3 62.3 61.3 61.4 56.4 56.7 60.6 50.3
+ zscore 65.4 67.3 65.1 66.5 64.1 58.5 62.1 55.6
+ quantile-u 65.0 67.3 64.3 65.7 63.0 56.2 61.0 53.0
+ quantile-uW 62.8 64.6 63.0 64.7 62.1 55.5 60.5 52.2
+ abtt-2 64.7 66.7 64.3 66.3 64.3 58.3 62.0 54.4
+ normalize 61.3 62.3 61.3 61.4 56.4 56.7 60.6 50.3
+ whiten 63.5 64.2 64.7 65.6 65.5 62.1 61.2 63.2
+ whitenW 60.9 63.7 63.1 65.8 67.0 61.4 61.0 64.3

Avg. accuracy (%) of clustering tasks

avg. 53.5 55.0 57.0 59.2 55.2 53.8 55.3 36.3
+ zscore 54.2 55.7 57.8 59.5 56.1 53.3 55.0 36.3
+ quantile-u 54.6 56.3 58.7 60.7 57.3 54.2 55.8 36.8
+ quantile-uW 54.2 56.3 60.1 61.1 58.6 54.5 56.0 36.9
+ abtt-2 53.4 54.8 57.0 59.0 55.8 53.6 55.0 36.5
+ normalize 53.4 55.0 59.7 59.7 56.1 55.5 57.2 38.5
+ whiten 35.4 35.7 33.1 29.8 26.8 25.3 26.0 24.8
+ whitenW 49.0 49.8 56.2 58.7 55.0 50.4 50.1 41.5
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4.1.4 Alignment and Uniformity

We observed that token pooling and post-processing techniques do not improve the align-
ment and uniformity properties of the representations. Let us remind the reader that
alignment is calculated with only those STS-B pairs with a similarity score of 5, while
uniformity with all pairs, as defined in Section 3.5.5, and smaller values are better.

We can observe in Figure 3 that the z-score post-processing always makes alignment
worse, while normalization of embeddings almost always does the same for the uniformity
of the representations. Excluding the random embeddings model, the best alignment and
uniformity properties are almost always with plain averaging and no post-processing ap-
plied.
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Figure 3: Alignment and uniformity of representations in relation to various token pooling
and post-processing techniques. Lower values are better.

Both alignment and uniformity are sensitive to the scaling of the embedding vectors.
Depending on the resulting scaling from the post-processing method, either one or the
other is increased. However, decreasing them both using these methods is found to be
difficult. This finding strengthens the reputation of these two metrics that only training
the transformer model, as shown in [143], is capable of improving them.
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As we mentioned, the outlier in its behavior here is the RE model, which improves
its uniformity by different weighting of tokens or using quantile-uniform post-processing.
Indeed, the latter post-processing is the least harmful for all models considered and disturbs
alignment and uniformity properties less.

4.2 Using Prompts

The normal use of prompts, as presented in [15], is to place the sentence [X] inside a
template as “This sentence: "[X]" means [MASK]” and use only the vector of [MASK]
token from the final layer as the full representation of [X]. Our experiments show that in
general, using prompts is beneficial; however, we found some ways to improve performance
even more.

First, extracting only the vector of [MASK] is not necessarily the best. We found that
a simple average of all tokens, including the ones from the prompt template, and also the
[MASK] token, is still a valid approach. Even more, it outperforms only the [MASK] token
approach for clustering and classification tasks, with corresponding 55.0 and 79.9 average
accuracies versus 54.2 and 76.8 for using only the [MASK] token (see T4 model results in
Table 4).

The use of the additional text template around the text enriches the target text rep-
resentation. Let us compare the performance of 12th layer averaged token representations
with and without a template (see Figure 4, T0 avg. and T4 avg. with a template versus
BERT avg. without). For all 3 groups of tasks—semantic textual similarity, clustering, and
classification—the T0 template achieves 61.3 average Spearman correlation, 53.5 clustering
accuracy, and 80.5 classification accuracy; the T4 template reaches 62.3, 55.0, and 79.9,
while a regular, non-templated text obtains just 53.2, 50.6, and 79.0, respectively. This
shows that the use of the templates allows the model to enrich target text representation.
However, this effect peaks at the last, 12th layer, and the achieved performance is similar
to the first + last layer combination of the regular non-templated vectors.

Performance of using only the [MASK] token also peaks at the 12th layer, so we inves-
tigated what influence it has in the enrichment of templated target text representation.
Could it be that this token is the main culprit for better performance of averaged tem-
plated text representations? To answer this question, we tried to omit the [MASK] token
from averaging (see Figure 4 T0 avg. no [MASK] and T4 avg. no [MASK]). For the T4
template and 12th layer representations, averaging all tokens yields 62.3 average Spearman
correlation, 55.0 clustering accuracy, and 79.9 classification accuracy; dropping the [MASK]

token from averaging yields 58.7, 53.3, and 79.8; non-templated performance is 53.2, 50.6,
and 79.0, respectively. We see that omitting the [MASK] token in averaging indeed hurts
the performance. On the other hand, the results show that it is responsible only for ap-
proximately half of the improvements, with the other half coming from the other tokens in
the templated text.

One good reason to use averaging instead of only the [MASK] token is that then token
weighting can be also applied. As we already showed in Table 4), the T4 template together
with idfTt token weighting and uniform quantile post-processing allowed us to reach the
average Spearman correlation of 71.6, which was the best among the tried methods. Also,
we observed that post-processing on text representations from [MASK] token was not as
effective as from averaged ones. This also suggests that all tokens in templated texts have
richer representations.

40



0 2 4 6 8 10 12 1
12

Layer

0

20

40

60

80

Av
g.

 S
TS

 S
pe

ar
m

an
 c

or
re

la
tio

n

(a)

T0 avg.
T0 [MASK]
T0 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(b)

T4 avg.
T4 [MASK]
T4 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(c)

BERT avg.
RE avg.

0 2 4 6 8 10 12 1
12

Layer

0

20

40

60

80

Av
g.

 c
lu

st
er

in
g 

ac
cu

ra
cy

(d)

T0 avg.
T0 [MASK]
T0 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(e)

T4 avg.
T4 [MASK]
T4 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(f)

BERT avg.
RE avg.

0 2 4 6 8 10 12 1
12

Layer

0

20

40

60

80

Av
g.

 c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

(g)

T0 avg.
T0 [MASK]
T0 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(h)

T4 avg.
T4 [MASK]
T4 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(i)

BERT avg.
RE avg.

Figure 4: Layer-wise performance of templated models T0 (subfigures a, d, g) and T4 (b, e,
h), as well as BERT versus RE with no weighting or post-processing (c, f, i). The average
performance of STS (a, b, c), clustering (d, e, f), and classification tasks (g, h, i) is shown
by the lines, while shadow areas correspond to the standard deviation. We also show first
+ last aggregation over layers as the last tick 1

12 on the horizontal axis.
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4.3 BERT + Avg. Model

One of the ways we sought to improve BERT transformer model representations is to
combine embeddings of the regular BERT with the ones averaged over multiple contexts.
That is, for each token in each BERT layer, we collected many different contexts, and
the averaged vector became the vector of the Avg. model. We then combined BERT
and Avg. model, according to the parameter w, which shows the fraction of Avg. model
representations in the resulting vector v:

v = vBERT (1− w) + vAvg.w. (10)

We have also varied the w parameter to the negative values in (10) to see if subtracting
(instead of adding) the context-average representations from the context-aware ones helps.

The impact of the w parameter and the choice of the layer to source the representations
(same layer for both BERT and Avg.) is presented in Figure 5.
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Figure 5: BERT + Avg. model performance dependence on the weight w of Avg. model
and layer, from which (for both models) representations are used. To the right of the black
line on the horizontal axis, average aggregation of multiple layers is also shown. Tokens
are simply averaged and no post-processing is used. The horizontal line with w = 0.0
corresponds to a regular Bert (B) model, w = 0.5 is B + Avg., and w = 1.0 is the Avg.
model. The white × marks the maximum value.

One can see that for clustering and classification tasks, the combination of both models
in equal portions of w = 0.5 is better than these models alone (w = 0.0 corresponds to
BERT, w = 1.0 is a single Avg. model). If we look at the best scores with the two
techniques applied in Table 4, for the average clustering accuracy this translates to an
improvement of 1.4% from the 63.4% of BERT to 64.8% of BERT + Avg.

Meanwhile, as we see in the same table, the average accuracy of classification tasks
without additional techniques applied to the combination of the first and last layers is
similar between only BERT (79.9%) and BERT + Avg. (79.7%). However, as we see in
Figure 5, differently from the first + last optimal layer setting for BERT, BERT + Avg. has
a sweet spot in the 10th layer with an average classification accuracy of 80.5%, surpassing
that of BERT by 0.6%.

These results suggest a conclusion that for clustering and classification tasks, combining
a regular BERT token with the same one but averaged over multiple contexts is beneficial.

As we already mentioned, STS tasks preferred the regular BERT (w = 0) to the BERT
+ Avg. on average. However, for several individual semantic textual similarity datasets,
the best weights turned out to be even negative. This is the case for STS15 (w = −0.25)
and STS16 (w = −0.75). The same negative weight of w = −0.5 preference was also
observed for the searchsnippets clustering dataset. Although the Spearman correlation for
three STS tasks was only up to several percent higher, for searchsnippets, the clustering
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accuracy increased to a staggering 80.2% from 72.2% of w = 0.0. This shows that the
determined values of w = 0.0 for STS and w = 0.5 for clustering and classification are not
universal, and for a small percentage of tasks, they can differ. For more BERT + Avg.
task-wise details, see Appendix A.2 figures for STS (Figure 6), clustering (Figure 7), and
classification (Figure 8) performance.

Layers

Figure 5 also depicts the task performance versus BERT layers. Our first observation is that
for STS and clustering tasks, there is a strong preference for the first layers. As a result, the
best combination of layers also involves the first ones; for semantic textual similarity tasks,
it is the average of representations from one, two, and twelve layers, and for clustering, zero,
one, two, and twelve layers. Even individual SICK-E, SICK-R, and STS-B classification
tasks, which originate from semantic textual similarity ones, have strong first layers (see
Figure 8 in Appendix A.2), although on average, the best layer for classification tasks is
the tenth. This shows that a lot of performance for tasks that work on similarities between
texts (STS and clustering) depends on the first layers, which, according to [234], have more
generalized token representations. However, the last layer, which receives recreated token
identities [234] is also important, as the best combinations (such as 1 + 2 + 12) also involve
it. This first + last cooperation of layers can be distinctly observed as a U shape for
clustering performance in layers (see Figure 5 and also Figure 4).

For most classification tasks (excluding those originating from STS), the U shape is
inversed. This is very clearly seen for binary classification tasks (see Figure 8 in Ap-
pendix A.2), where the highest classification accuracy is concentrated between the ninth
and the eleventh layers. This aligns with the explanations of the previous work [100], which
argues that the last layer is over-specialized for the training objective.

5 Conclusions

We empirically evaluated the effects of various aggregation and post-processing techniques
of token representations in a trained transformer and other models to form good text-,
paragraph-, or sentence-level embeddings. We carried out the empirical evaluation of the
embeddings on three classes of downstream text-level tasks: Semantic Textual Similarity
(STS), clustering, and classification.

We found the techniques to benefit all models studied for the unsupervised STS (the
best model average Spearman correlation increased from 62.3% to 71.6%) and clustering
(the best model average clustering accuracy increased from 59.2% to 64.8%), while it had
no positive effect on the supervised classification tasks (see Table 4).

We present a strong and very simple baseline model of Random Embeddings (RE),
where every token is assigned a random vector as its embedding. Combined with token
aggregation and post-processing techniques, it also almost matches the average STS perfor-
mance of the BERT model with the techniques applied, with 66.4% versus 69.8% average
Spearman correlation. It also shows very high performance for some tasks, like stackover-
flow classification, where BERT token contextualization may not work well on code samples
in the texts (see Section 4.1.2 for more details). We encourage future work to use RE as
a baseline, due to its mid-level performance, simple implementation, and ability to sepa-
rate the contribution to the performance of the learned contexts from the aggregation and
post-processing techniques.

We found that the aggregation and post-processing techniques tried typically increase
the isotropy of the representations, and the isotropy for most models is positively correlated
(up to 69% Pearson correlation) with the Spearman correlation of STS tasks (Section 4.1.3).
The highest isotropy improvement is observed for our Random Embeddings model, since
its token representations have the maximal isotropy to start with. We did not find the
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token aggregation and post-processing techniques to improve the alignment and uniformity
properties of representations.

We question the use of prompts (adding a sentence into a certain text template) for
retrieving the representation of the sentence from only the [MASK] token. Our experiments
show that averaging all the templated text tokens, with idf weighting and post-processing
for the unsupervised tasks, is better. Meanwhile, the average increase in performance due
to the added template is only obvious for the STS tasks, gives no improvement in clustering,
and is very slight in classification (see Table 4, Section 4.2).

We presented a static vector model Avg., which simply contains BERT tokens averaged
over multiple different contexts. Our experiments show that it outperforms a more complex
BERT2Static [49], also a static word-level model, yet specially trained on BERT contexts.
With the best post-processing and token aggregation techniques, the advantage for unsu-
pervised STS tasks is 69.5 versus 66.4, and for clustering, it is 62.2 versus 57.2., with a
negligible difference for classification tasks. Moreover, we show that combining Avg. with
the parent BERT model can bring even further improvements. In particular, BERT + Avg.
reached the highest average clustering accuracy of 64.8 out of all our considered models, as
well as the classification accuracy of 80.5 (Section 4.3). We encourage future work to also
use Avg. as a baseline, both due to its upper-level performance and simple implementation.

In our work, we also analyzed prompt and BERT + Avg. models layer-wise. We found
that for the STS tasks, taking the representations from the first layers performs better, and
for the clustering task, the performance profile forms a “U” shape with tops at the first
and last layers. Therefore, for these two task groups, we mostly use the average of first
+ last layers, harnessing both of the tops for the best performance. On the other hand,
classification tasks have an inverted “U” shape with the top in the 10th layer (Figure 5).
We did not find token aggregation and post-processing techniques to change such profile
curvature.

In this research, we used a pre-trained BERT as a manageable representative of trans-
former models, but the findings should be transferable to other types of transformers, in-
cluding large language models. We also specifically did not perform task-specific fine-tuning
of the model to keep it universal. This enables the same model to be used in multiple ways.
For example, given a prompt, its text-level embedding can be extracted from the model
using the techniques investigated here, and this embedding can be used to search an exter-
nal database for related information to add the prompt to the same model, i.e., we can use
the same model for both query encoding and generation in retrieval-augmented generation
[235]. Alternatively, one of the simpler baseline models proposed here could be used as the
query encoder.
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F. Meziane, and E. Métais, Eds. Cham: Springer International Publishing, 2015, pp. 35–50.

[39] S. Ritter, C. Long, D. Paperno, M. Baroni, M. Botvinick, and A. Goldberg, “Leveraging
preposition ambiguity to assess compositional distributional models of semantics,” in Proceedings
of the Fourth Joint Conference on Lexical and Computational Semantics. Denver, Colorado:
Association for Computational Linguistics, Jun. 2015, pp. 199–204. [Online]. Available:
https://aclanthology.org/S15-1023

46

https://compass.onlinelibrary.wiley.com/doi/abs/10.1002/lnco.362
https://ojs.aaai.org/index.php/AAAI/article/view/4730
https://aclanthology.org/S14-2114
https://www.sciencedirect.com/science/article/pii/000437029090007M
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01106.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01106.x
https://aclanthology.org/D14-1079
https://aclanthology.org/D10-1115
https://aclanthology.org/W10-2805
https://aclanthology.org/W13-0112
https://aclanthology.org/2014.lilt-9.5
https://arxiv.org/abs/1412.1632
https://aclanthology.org/S15-1023


[40] L. White, R. Togneri, W. Liu, and M. Bennamoun, “How well sentence embeddings capture
meaning,” in Proceedings of the 20th Australasian Document Computing Symposium, ser. ADCS
’15. New York, NY, USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2838931.2838932

[41] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, and L. Carin, “Baseline
needs more love: On simple word-embedding-based models and associated pooling mechanisms,” in
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp.
440–450. [Online]. Available: https://aclanthology.org/P18-1041

[42] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal paraphrastic sentence
embeddings,” 2015. [Online]. Available: https://arxiv.org/abs/1511.08198

[43] H. Aldarmaki and M. Diab, “Evaluation of unsupervised compositional representations,” in
Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New
Mexico, USA: Association for Computational Linguistics, Aug. 2018, pp. 2666–2677. [Online].
Available: https://aclanthology.org/C18-1226

[44] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, “Deep unordered composition
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A Detailed Performance on Individual Tasks

A.1 Token Aggregation and Post-Processing

Table 6: Spearman correlation dependence on token aggregation and post-processing tech-
niques for semantic textual similarity STS12 task. The best result for each model is bolded,
while underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 48.7 53.9 45.1 48.7 48.5 47.2 54.2 34.7
+ normalize 48.7 53.9 45.1 48.7 48.5 47.2 54.2 34.7
+ quantile-u 52.1 56.2 48.7 51.9 51.5 45.8 52.4 40.1
+ quantile-uW 50.2 55.1 46.6 50.7 50.3 44.6 52.5 36.9
+ whiten 41.9 42.9 43.2 44.5 46.0 45.0 44.6 44.1
+ whitenW 46.2 50.4 47.3 52.8 57.7 54.7 55.0 54.2
+ zscore 51.5 54.1 50.2 53.4 53.1 49.1 54.7 43.6

idfWt 56.2 56.8 57.5 58.7 58.3 57.6 56.9 55.4
+ normalize 56.2 56.8 57.5 58.7 58.3 57.7 56.9 55.4
+ quantile-u 56.2 56.5 56.4 57.9 57.5 54.5 53.6 52.0
+ quantile-uW 57.0 57.5 57.1 58.7 58.4 55.4 54.4 52.6
+ whiten 43.7 43.8 46.1 46.7 47.2 45.3 44.7 44.6
+ whitenW 52.6 53.3 57.5 58.8 58.7 57.5 56.8 55.5
+ zscore 56.1 55.9 57.4 58.7 58.2 56.9 56.4 55.6

idfTt 59.2 64.4 57.3 59.0 59.0 47.2 54.2 55.1
+ normalize 59.2 64.4 57.3 59.0 59.0 47.2 54.2 55.1
+ quantile-u 58.5 62.6 56.5 58.2 58.1 45.8 52.4 52.3
+ quantile-uW 59.1 63.9 57.0 58.8 58.9 44.6 52.5 52.9
+ whiten 43.8 45.3 46.0 46.7 47.4 45.0 44.6 44.6
+ whitenW 52.6 56.3 56.9 58.2 58.4 54.7 55.0 55.1
+ zscore 56.9 59.7 57.7 59.3 59.3 49.1 54.7 55.6

-biases 55.1 58.2 58.6 62.2 62.9 45.1 51.9 57.5
+ normalize 55.1 58.2 58.6 62.2 62.8 45.1 51.9 57.5
+ quantile-u 56.0 59.6 57.9 60.9 61.2 44.0 50.3 54.6
+ quantile-uW 54.7 59.1 58.2 61.5 61.6 42.7 50.3 55.1
+ whitenW 51.8 54.0 57.2 60.2 61.6 53.2 53.3 58.1
+ whiten 42.5 43.2 45.1 46.2 47.6 44.2 44.2 46.2
+ zscore 55.1 57.5 57.8 60.4 60.6 47.4 52.7 58.2

[MASK] 55.2 60.6
+ normalize 55.2 60.6
+ quantile-u 56.0 60.8
+ quantile-uW 56.6 61.7
+ whiten 47.7 48.0
+ whitenW 52.5 57.7
+ zscore 55.4 59.8
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Table 7: Spearman correlation dependence on token aggregation and post-processing tech-
niques for semantic textual similarity STS13 task. The best result for each model is bolded,
while underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 62.6 64.7 64.3 63.4 56.6 61.4 66.2 48.8
+ normalize 62.6 64.7 64.3 63.4 56.6 61.4 66.2 48.8
+ quantile-u 68.4 70.9 68.3 69.0 65.5 60.4 68.9 54.8
+ quantile-uW 64.0 66.5 65.7 66.8 64.0 59.2 67.2 53.3
+ whiten 76.0 76.6 77.6 78.3 78.0 76.4 76.1 75.1
+ whitenW 62.2 66.5 64.8 65.8 66.2 60.6 60.8 63.7
+ zscore 70.7 72.5 70.4 70.7 67.1 62.8 68.9 55.9

idfWt 75.4 74.7 77.2 79.1 77.8 77.5 77.3 72.5
+ normalize 75.4 74.7 77.2 79.1 77.8 77.5 77.3 72.5
+ quantile-u 76.7 76.0 77.7 79.3 78.7 77.1 76.3 73.4
+ quantile-uW 75.6 74.7 77.1 79.3 79.1 77.2 76.7 74.2
+ whiten 76.8 76.0 78.3 78.6 77.6 77.1 76.7 74.6
+ whitenW 68.1 68.1 74.1 75.2 75.4 73.1 73.9 72.7
+ zscore 76.7 76.4 78.2 79.7 79.3 77.5 78.0 73.0

idfTt 70.8 73.7 74.8 76.5 76.0 61.4 66.2 68.3
+ normalize 70.8 73.7 74.8 76.5 76.0 61.4 66.2 68.3
+ quantile-u 74.7 77.0 76.0 77.2 76.7 60.4 68.9 71.9
+ quantile-uW 72.0 74.6 74.8 76.4 76.0 59.2 67.2 71.5
+ whiten 77.1 78.0 78.1 78.3 77.3 76.4 76.1 74.0
+ whitenW 67.2 71.0 70.3 70.4 70.1 60.6 60.8 68.1
+ zscore 75.9 77.7 76.2 76.9 75.8 62.8 68.9 69.8

-biases 66.5 68.7 68.4 69.9 68.1 56.3 60.5 61.3
+ normalize 66.5 68.7 68.4 69.9 68.1 56.3 60.5 61.3
+ quantile-u 70.9 73.5 70.8 71.9 70.3 55.0 63.2 66.2
+ quantile-uW 67.4 70.3 68.6 69.9 68.2 53.9 61.3 64.4
+ whitenW 63.1 67.1 65.2 65.7 65.9 56.6 56.7 63.0
+ whiten 76.2 76.8 77.9 78.5 78.1 73.3 73.1 74.7
+ zscore 73.0 74.9 72.5 72.9 70.6 58.5 64.0 64.6

[MASK] 63.4 76.2
+ normalize 63.4 76.2
+ quantile-u 68.1 77.3
+ quantile-uW 65.2 76.0
+ whiten 73.1 77.6
+ whitenW 61.7 70.9
+ zscore 69.4 76.9
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Table 8: Spearman correlation dependence on token aggregation and post-processing tech-
niques for semantic textual similarity STS14 task. The best result for each model is bolded,
while underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 53.9 54.5 54.6 55.4 51.7 55.9 61.2 48.2
+ normalize 53.9 54.5 54.6 55.4 51.7 55.9 61.2 48.2
+ quantile-u 57.8 60.1 58.1 60.0 58.2 53.5 62.9 52.3
+ quantile-uW 55.6 57.1 57.0 59.4 58.1 53.5 62.2 52.1
+ whiten 64.0 65.0 66.2 68.1 69.4 67.7 68.5 68.3
+ whitenW 53.5 57.0 57.6 61.1 64.5 60.7 61.3 64.6
+ zscore 58.6 61.3 58.7 61.2 59.6 55.7 61.3 53.5

idfWt 65.5 65.9 65.2 67.7 67.8 67.2 67.8 67.6
+ normalize 65.5 65.9 65.2 67.7 67.8 67.2 67.8 67.6
+ quantile-u 66.7 66.7 66.5 69.0 69.3 67.2 68.1 66.4
+ quantile-uW 66.5 66.6 66.2 68.9 69.3 67.1 68.0 67.0
+ whiten 65.4 65.4 67.6 68.5 68.8 68.3 68.7 67.9
+ whitenW 59.2 59.4 64.7 67.0 68.2 66.6 67.4 68.0
+ zscore 65.7 65.3 66.2 68.8 69.2 66.8 68.0 67.8

idfTt 61.6 63.9 64.3 66.7 67.1 55.9 61.2 65.5
+ normalize 61.6 63.9 64.3 66.7 67.1 55.9 61.2 65.5
+ quantile-u 64.2 66.5 65.8 67.8 68.0 53.5 62.9 65.3
+ quantile-uW 62.9 65.4 65.3 67.5 67.8 53.5 62.2 65.7
+ whiten 65.2 66.8 67.5 68.3 68.5 67.7 68.5 67.4
+ whitenW 58.0 61.6 63.0 64.6 65.3 60.7 61.3 65.3
+ zscore 64.5 66.8 65.1 67.1 67.2 55.7 61.3 65.7

-biases 60.7 62.0 63.8 66.9 66.9 53.1 58.1 64.7
+ normalize 60.7 62.0 63.8 66.9 66.9 53.1 58.1 64.7
+ quantile-u 63.4 65.9 65.2 67.9 67.8 50.8 59.8 65.2
+ quantile-uW 61.9 64.3 64.8 67.7 67.6 50.9 59.2 65.3
+ whitenW 57.3 60.4 62.8 65.5 67.3 58.5 58.9 66.2
+ whiten 64.9 66.2 68.3 69.6 70.4 65.8 66.4 68.8
+ zscore 64.1 66.3 64.8 67.4 67.2 53.3 58.6 65.3

[MASK] 53.9 63.9
+ normalize 53.9 63.9
+ quantile-u 56.1 65.1
+ quantile-uW 54.8 64.7
+ whiten 60.8 66.3
+ whitenW 51.5 61.3
+ zscore 56.7 65.1
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Table 9: Spearman correlation dependence on token aggregation and post-processing tech-
niques for semantic textual similarity STS15 task. The best result for each model is bolded,
while underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 70.2 70.6 70.5 70.0 64.2 69.8 74.2 62.1
+ normalize 70.2 70.6 70.5 70.0 64.2 69.8 74.2 62.1
+ quantile-u 71.8 73.7 72.7 74.3 72.4 68.9 73.6 61.4
+ quantile-uW 71.5 72.5 72.3 74.1 72.6 69.4 74.4 62.7
+ whiten 62.6 62.9 64.0 65.9 69.3 69.3 68.8 67.9
+ whitenW 70.2 71.8 71.9 74.9 77.0 74.7 75.2 74.7
+ zscore 71.9 73.0 72.6 74.3 72.4 69.3 73.9 64.3

idfWt 75.4 74.4 75.8 75.4 71.5 73.7 74.4 74.4
+ normalize 75.4 74.4 75.8 75.4 71.5 73.7 74.4 74.4
+ quantile-u 75.1 74.2 75.3 75.7 73.7 73.4 71.9 68.5
+ quantile-uW 76.5 75.6 76.3 76.9 74.8 74.6 73.7 71.1
+ whiten 62.7 61.4 64.3 65.2 66.3 66.8 66.7 65.0
+ whitenW 72.2 71.6 75.0 76.5 76.6 75.4 75.5 74.4
+ zscore 74.2 73.1 75.2 76.2 75.0 73.8 74.4 73.2

idfTt 74.1 75.2 76.2 76.8 75.1 69.8 74.2 73.8
+ normalize 74.1 75.2 76.2 76.8 75.1 69.8 74.2 73.8
+ quantile-u 75.2 77.1 76.0 76.8 75.7 68.9 73.6 69.5
+ quantile-uW 75.4 77.0 76.9 77.8 76.7 69.4 74.4 71.6
+ whiten 63.1 64.2 64.5 66.0 68.5 69.3 68.8 67.2
+ whitenW 72.9 74.6 75.4 76.2 75.8 74.7 75.2 73.1
+ zscore 75.0 76.0 75.9 76.8 75.8 69.3 73.9 72.7

-biases 72.9 73.3 76.2 77.3 75.2 67.3 70.8 74.3
+ normalize 72.9 73.3 76.2 77.3 75.2 67.3 70.8 74.3
+ quantile-u 74.1 76.1 76.3 77.5 76.2 66.3 70.1 69.6
+ quantile-uW 73.7 75.3 76.8 78.4 77.3 66.9 70.9 71.7
+ whitenW 72.6 73.7 75.4 77.0 77.3 72.6 72.6 74.8
+ whiten 64.2 64.8 65.2 66.5 69.1 67.4 66.4 66.8
+ zscore 74.4 75.1 75.7 76.9 75.7 67.0 70.7 73.6

[MASK] 67.0 74.1
+ normalize 67.0 74.1
+ quantile-u 68.0 74.7
+ quantile-uW 68.3 75.7
+ whiten 61.0 65.1
+ whitenW 67.7 74.5
+ zscore 68.0 72.9
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Table 10: Spearman correlation dependence on token aggregation and post-processing tech-
niques for semantic textual similarity STS16 task. The best result for each model is bolded,
while underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 69.1 69.7 67.9 65.2 56.4 55.2 58.5 55.5
+ normalize 69.1 69.7 67.9 65.2 56.4 55.1 58.5 55.5
+ quantile-u 70.1 72.4 70.3 71.0 67.0 55.9 59.5 54.8
+ quantile-uW 69.7 71.5 69.8 70.0 65.3 54.6 57.9 55.1
+ whiten 65.4 65.9 67.1 68.9 69.9 65.0 63.0 67.1
+ whitenW 64.7 67.2 69.9 71.5 71.1 63.1 62.8 68.3
+ zscore 69.3 71.0 72.0 73.2 69.8 60.2 62.3 60.4

idfWt 70.1 69.1 73.9 73.0 69.5 68.8 68.0 71.9
+ normalize 70.1 69.1 73.9 73.0 69.5 68.8 68.0 71.9
+ quantile-u 70.5 69.9 73.7 74.2 72.9 68.1 65.8 68.9
+ quantile-uW 70.5 69.8 74.0 74.4 72.7 67.9 66.2 69.6
+ whiten 64.6 64.0 68.0 68.9 69.1 65.6 63.4 67.3
+ whitenW 70.0 69.1 75.6 76.0 74.8 69.6 68.7 72.4
+ zscore 72.2 71.7 75.6 76.4 74.8 70.3 69.5 72.2

idfTt 72.9 73.1 72.8 72.0 69.7 55.2 58.5 69.1
+ normalize 72.9 73.1 72.8 72.0 69.7 55.2 58.5 69.1
+ quantile-u 73.9 75.0 72.8 73.0 71.8 55.9 59.5 67.3
+ quantile-uW 73.7 74.6 72.7 72.7 71.2 54.6 57.9 67.5
+ whiten 67.0 68.6 68.0 68.7 69.5 65.0 63.0 67.8
+ whitenW 69.0 71.0 73.2 72.8 71.3 63.1 62.8 69.3
+ zscore 73.1 73.1 74.4 74.4 73.1 60.2 62.3 70.1

-biases 70.1 71.9 72.2 72.1 68.4 52.8 56.3 65.4
+ normalize 70.1 71.9 72.2 72.1 68.4 52.8 56.3 65.4
+ quantile-u 71.1 73.7 72.3 73.3 71.6 53.5 57.5 64.7
+ quantile-uW 70.6 73.2 72.1 72.7 70.4 52.3 55.8 64.4
+ whitenW 65.2 68.0 71.0 72.1 71.5 61.1 60.9 68.5
+ whiten 64.9 66.2 67.3 68.5 69.3 63.4 61.4 67.4
+ zscore 71.1 72.5 73.3 74.1 72.0 58.2 60.4 66.7

[MASK] 67.2 71.0
+ normalize 67.2 71.0
+ quantile-u 68.2 71.8
+ quantile-uW 67.7 71.7
+ whiten 65.5 70.0
+ whitenW 64.1 69.4
+ zscore 66.6 68.9
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Table 11: Spearman correlation dependence on token aggregation and post-processing tech-
niques for semantic textual similarity STS-B task. The best result for each model is bolded,
while underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 60.4 61.0 59.0 59.9 54.2 56.1 60.7 46.5
+ normalize 60.4 61.0 59.0 59.9 54.2 56.1 60.7 46.5
+ quantile-u 67.7 70.9 63.6 65.2 61.7 56.9 61.1 52.4
+ quantile-uW 62.8 65.0 61.3 63.5 59.7 54.7 60.4 50.5
+ whiten 68.2 70.0 68.7 70.0 69.6 66.7 64.6 68.1
+ whitenW 62.1 65.8 62.6 67.3 69.4 65.1 64.1 67.5
+ zscore 68.7 71.1 65.0 66.7 63.0 58.8 62.5 54.6

idfWt 69.0 68.2 70.3 69.6 66.4 68.0 66.9 69.8
+ normalize 69.0 68.2 70.3 69.6 66.4 68.0 66.9 69.8
+ quantile-u 69.4 68.6 69.3 69.6 67.8 66.7 64.7 64.4
+ quantile-uW 69.4 68.8 70.2 70.3 68.1 67.0 65.3 65.7
+ whiten 65.6 65.0 67.9 68.0 67.2 65.8 64.1 66.5
+ whitenW 67.0 66.6 71.2 72.1 71.5 69.8 68.2 70.4
+ zscore 70.7 69.9 71.0 71.7 70.1 69.0 67.8 70.0

idfTt 68.8 70.7 69.6 69.3 67.3 56.1 60.7 67.0
+ normalize 68.8 70.7 69.6 69.3 67.3 56.1 60.7 67.0
+ quantile-u 72.4 75.1 69.2 69.3 67.7 56.9 61.1 64.2
+ quantile-uW 70.4 73.2 69.7 69.6 67.7 54.7 60.4 65.0
+ whiten 69.6 72.2 68.4 68.4 67.7 66.7 64.6 67.0
+ whitenW 67.8 71.0 69.6 69.9 68.7 65.1 64.1 67.1
+ zscore 72.4 74.7 70.1 70.3 68.6 58.8 62.5 67.4

-biases 64.7 65.4 70.2 71.0 67.8 52.9 57.3 66.6
+ normalize 64.7 65.4 70.2 71.0 67.8 52.9 57.3 66.6
+ quantile-u 70.1 73.4 69.9 71.0 68.9 54.2 58.1 62.8
+ quantile-uW 66.1 69.2 70.3 71.5 69.0 51.7 57.1 63.9
+ whitenW 66.1 68.5 69.6 71.3 70.9 61.8 60.8 68.8
+ whiten 68.1 69.9 69.5 69.9 69.3 64.6 62.4 66.5
+ zscore 71.1 73.2 70.2 71.1 68.9 56.1 59.4 67.4

[MASK] 68.5 73.3
+ normalize 68.5 73.3
+ quantile-u 70.8 74.8
+ quantile-uW 69.3 74.4
+ whiten 70.5 74.3
+ whitenW 65.3 70.9
+ zscore 70.5 73.7
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Table 12: Spearman correlation dependence on token aggregation and post-processing tech-
niques for semantic textual similarity SICK-R task. The best result for each model is bolded,
while underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 64.4 64.2 63.8 63.1 60.3 60.2 61.2 53.1
+ normalize 64.4 64.2 63.8 63.1 60.3 60.2 61.2 53.1
+ quantile-u 66.1 66.3 64.9 64.7 62.5 61.0 61.8 54.8
+ quantile-uW 64.9 64.7 64.3 64.1 61.6 59.7 61.0 53.1
+ whiten 61.0 60.8 60.4 59.1 55.1 55.3 55.4 53.3
+ whitenW 63.1 63.2 63.7 63.9 61.5 61.0 59.9 58.4
+ zscore 66.3 66.7 65.0 64.9 62.8 62.1 63.1 56.3

idfWt 62.5 62.0 61.7 59.7 57.5 61.9 60.1 57.4
+ normalize 62.5 62.0 61.7 59.7 57.5 61.9 60.2 57.4
+ quantile-u 63.0 62.6 61.8 60.4 58.5 60.8 59.4 52.9
+ quantile-uW 62.9 62.5 61.8 60.5 59.0 61.1 59.5 54.7
+ whiten 57.7 57.5 57.1 55.9 53.8 54.5 54.7 52.0
+ whitenW 60.9 61.1 61.9 60.8 59.0 61.2 60.1 56.7
+ zscore 63.7 63.4 63.2 62.3 60.9 62.9 61.3 57.3

idfTt 64.4 65.0 62.8 61.1 59.2 60.2 61.3 56.8
+ normalize 64.4 65.0 62.8 61.1 59.2 60.2 61.2 56.8
+ quantile-u 66.0 66.3 63.2 61.6 59.7 61.0 61.8 54.3
+ quantile-uW 65.0 65.6 63.0 61.3 59.5 59.7 61.0 55.2
+ whiten 59.9 60.3 58.1 56.8 54.4 55.3 55.4 52.5
+ whitenW 63.5 64.2 62.4 61.0 58.9 61.0 59.9 56.3
+ zscore 66.2 66.5 63.7 62.4 60.8 62.1 63.1 57.0

-biases 65.1 65.9 65.6 65.1 63.8 59.0 59.7 59.7
+ normalize 65.1 65.9 65.6 65.1 63.8 59.0 59.7 59.7
+ quantile-u 66.9 67.7 66.0 65.7 64.7 59.9 60.2 56.5
+ quantile-uW 65.6 66.5 65.8 65.5 64.4 58.6 59.3 57.3
+ whitenW 64.8 65.4 64.7 63.9 61.3 59.8 58.6 58.0
+ whiten 61.3 61.1 60.3 58.9 55.4 54.2 54.1 53.1
+ zscore 67.1 67.8 66.3 66.3 65.6 61.1 62.0 60.4

[MASK] 64.8 65.0
+ normalize 64.8 65.0
+ quantile-u 67.1 66.0
+ quantile-uW 65.6 65.6
+ whiten 61.7 61.8
+ whitenW 63.3 64.2
+ zscore 67.1 66.2
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Table 13: Spearman correlation dependence on token aggregation and post-processing tech-
niques for semantic textual similarity STR task. The best result for each model is bolded,
while underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 60.9 59.8 65.4 65.6 59.4 48.2 48.9 53.3
+ normalize 60.9 59.8 65.4 65.6 59.4 48.2 48.9 53.3
+ quantile-u 65.7 67.8 68.1 69.2 65.4 47.3 47.9 53.6
+ quantile-uW 63.6 64.1 67.3 68.8 65.3 48.0 48.6 53.7
+ whiten 68.9 69.6 70.1 69.7 67.0 51.4 48.8 62.1
+ whitenW 65.2 67.7 66.7 68.7 68.6 51.3 49.2 63.2
+ zscore 66.6 68.9 66.7 67.5 64.5 50.1 50.1 56.0

idfWt 68.2 67.8 71.9 70.9 66.3 53.8 51.5 62.6
+ normalize 68.2 67.8 71.9 70.9 66.3 53.8 51.5 62.6
+ quantile-u 69.7 69.5 72.5 72.7 70.0 52.4 49.7 59.7
+ quantile-uW 69.2 69.0 72.5 72.8 70.4 53.3 50.8 61.2
+ whiten 69.5 68.8 70.1 68.9 66.2 51.9 49.5 61.1
+ whitenW 68.2 67.8 70.8 70.6 67.7 52.4 49.9 61.7
+ zscore 69.5 68.9 71.4 71.2 68.7 54.0 52.2 62.4

idfTt 67.1 67.5 71.8 70.8 66.9 48.2 48.9 63.3
+ normalize 67.1 67.5 71.8 70.8 66.9 48.2 48.9 63.3
+ quantile-u 71.0 73.2 72.1 71.9 69.3 47.3 47.9 59.3
+ quantile-uW 69.8 71.6 72.0 72.0 69.7 48.0 48.6 60.6
+ whiten 70.4 71.1 70.4 69.0 66.3 51.4 48.8 61.4
+ whitenW 69.0 71.3 70.4 70.0 67.6 51.3 49.2 62.1
+ zscore 70.8 73.2 71.4 71.3 69.3 50.1 50.1 63.1

-biases 62.8 62.5 70.7 70.1 64.9 46.0 45.8 60.3
+ normalize 62.8 62.5 70.7 70.1 64.9 46.0 45.8 60.3
+ quantile-u 66.7 69.6 72.2 72.1 68.6 45.7 45.0 58.0
+ quantile-uW 65.2 67.1 71.9 71.9 68.4 46.2 45.5 58.9
+ whitenW 67.8 69.3 69.2 69.2 66.4 49.4 47.0 60.1
+ whiten 69.1 69.5 69.6 68.5 65.0 49.6 46.9 59.6
+ zscore 68.3 70.8 69.7 69.1 65.9 48.5 47.6 60.0

[MASK] 67.0 70.1
+ normalize 67.0 70.1
+ quantile-u 70.7 73.5
+ quantile-uW 69.1 73.2
+ whiten 70.5 72.3
+ whitenW 68.1 72.6
+ zscore 70.7 73.1
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Table 14: Clustering accuracy dependence on token aggregation and post-processing tech-
niques for the agnews dataset. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 85.4 80.7 81.2 84.4 79.0 85.0 85.0 28.0
+ normalize 85.5 80.6 85.6 86.1 79.6 85.7 85.9 27.2
+ quantile-u 85.2 86.9 84.0 85.1 79.7 85.2 85.2 27.5
+ quantile-uW 85.4 86.7 85.3 85.7 80.6 85.4 85.4 27.2
+ whiten 34.3 31.3 31.3 31.5 30.5 29.9 29.9 28.8
+ whitenW 75.2 75.0 72.7 72.8 58.6 70.6 69.0 28.4
+ zscore 86.0 81.2 81.3 83.8 79.8 84.8 85.2 27.7

idfWt 79.5 81.4 80.6 84.0 78.0 83.6 83.7 39.9
+ normalize 84.9 85.6 84.7 85.1 78.3 85.0 84.9 41.4
+ quantile-u 85.8 85.7 81.7 84.4 78.6 84.2 84.2 41.2
+ quantile-uW 85.6 85.8 81.8 84.7 79.1 84.6 84.7 43.4
+ whiten 30.9 32.0 31.3 31.8 30.7 30.7 30.1 27.6
+ whitenW 74.5 78.1 73.8 74.4 70.9 72.5 72.1 38.4
+ zscore 85.9 81.8 80.4 84.0 78.9 83.7 83.7 41.0

idfTt 80.1 82.1 80.9 82.5 79.3 85.0 85.0 28.7
+ normalize 85.2 82.2 85.1 84.8 81.7 85.7 85.9 28.5
+ quantile-u 85.9 87.0 82.4 81.9 80.9 85.2 85.2 28.6
+ quantile-uW 85.9 87.0 82.0 84.4 82.1 85.3 85.5 28.4
+ whiten 30.2 32.6 30.9 31.3 29.9 29.9 29.8 28.0
+ whitenW 72.1 68.4 73.0 71.9 45.5 70.6 69.0 28.9
+ zscore 85.9 82.6 81.1 82.1 79.7 84.8 85.2 28.8

-biases 85.7 86.4 81.4 85.6 83.4 84.0 83.8 28.5
+ normalize 85.7 86.6 86.8 86.8 83.8 85.3 85.5 28.4
+ quantile-u 85.4 86.7 85.7 85.4 83.4 84.7 84.7 28.5
+ quantile-uW 85.6 87.1 86.1 86.0 83.6 84.6 84.9 29.4
+ whitenW 73.5 73.4 72.4 72.1 55.5 68.8 67.6 28.2
+ whiten 31.1 31.5 33.0 30.4 30.3 29.5 29.8 28.3
+ zscore 86.0 87.1 81.7 84.8 83.5 84.4 84.5 28.1

[MASK] 74.8 81.9
+ normalize 75.1 82.2
+ quantile-u 63.1 82.1
+ quantile-uW 76.1 84.2
+ whiten 30.9 31.8
+ whitenW 52.9 48.3
+ zscore 76.1 81.7
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Table 15: Clustering accuracy dependence on token aggregation and post-processing tech-
niques for the biomedical dataset. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 32.7 32.4 34.8 36.1 30.7 33.1 37.0 19.4
+ normalize 32.8 32.0 35.1 36.3 30.3 33.8 37.6 20.7
+ quantile-u 33.6 32.5 37.0 39.1 33.1 32.9 36.7 21.0
+ quantile-uW 33.4 32.5 35.4 37.9 34.5 33.0 37.0 21.1
+ whiten 29.4 30.2 27.2 23.2 18.2 12.7 13.2 15.9
+ whitenW 34.8 34.7 40.2 42.7 36.5 35.0 34.4 29.4
+ zscore 33.5 33.0 36.1 37.4 32.1 32.4 36.1 20.0

idfWt 31.0 30.0 32.3 32.3 28.1 34.5 34.5 32.1
+ normalize 31.2 30.2 32.5 32.6 28.7 34.7 34.8 35.2
+ quantile-u 32.5 31.3 33.6 33.6 29.8 33.9 35.0 32.4
+ quantile-uW 31.7 30.7 31.9 33.6 30.7 33.7 34.4 33.4
+ whiten 27.3 27.6 26.4 20.6 17.1 11.8 12.4 16.7
+ whitenW 32.8 32.1 37.0 38.7 35.4 37.2 37.2 30.8
+ zscore 32.0 30.8 32.6 32.5 28.2 34.3 34.3 31.8

idfTt 33.4 33.6 36.0 36.2 32.6 33.1 37.0 30.0
+ normalize 33.6 34.1 36.0 37.1 33.9 33.8 37.6 32.2
+ quantile-u 35.4 35.3 36.9 37.2 34.1 32.9 36.7 31.3
+ quantile-uW 35.0 35.7 36.6 37.5 34.7 33.0 37.0 32.2
+ whiten 28.3 30.8 20.9 19.4 16.3 12.7 13.2 15.2
+ whitenW 36.8 37.4 40.4 39.9 33.1 35.0 34.4 29.2
+ zscore 34.7 35.4 36.9 36.8 32.4 32.4 36.1 29.5

-biases 35.1 32.2 39.0 39.2 37.2 31.6 35.9 29.2
+ normalize 35.2 32.5 39.4 39.4 37.7 32.9 36.9 30.8
+ quantile-u 36.0 33.0 39.8 39.6 37.2 32.3 36.2 29.9
+ quantile-uW 36.6 34.6 39.6 39.9 37.3 32.4 36.3 30.9
+ whitenW 38.6 38.7 41.7 40.3 34.4 34.4 33.4 28.7
+ whiten 29.8 31.6 22.0 17.1 13.5 12.5 12.0 13.2
+ zscore 35.6 32.7 39.4 39.5 37.0 30.9 35.6 28.7

[MASK] 24.0 34.8
+ normalize 25.1 35.3
+ quantile-u 27.4 35.9
+ quantile-uW 25.1 34.7
+ whiten 21.9 28.4
+ whitenW 23.7 32.8
+ zscore 26.4 35.0
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Table 16: Clustering accuracy dependence on token aggregation and post-processing tech-
niques for the googleTS dataset. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 63.5 64.3 66.1 66.1 65.1 66.2 65.8 61.2
+ normalize 62.7 64.6 66.2 67.1 66.2 68.3 67.7 67.1
+ quantile-u 64.8 65.1 67.1 67.4 67.3 66.3 66.9 63.5
+ quantile-uW 63.9 64.7 66.4 68.0 66.7 66.9 67.2 63.6
+ whiten 59.2 60.3 57.5 57.3 54.5 58.1 58.4 53.1
+ whitenW 62.4 62.0 65.6 66.1 65.2 65.8 65.8 61.7
+ zscore 63.6 65.0 66.7 67.1 65.9 66.0 66.6 61.8

idfWt 63.5 62.6 65.2 66.2 65.6 64.5 65.8 63.8
+ normalize 64.3 63.1 66.0 66.5 66.0 66.5 66.7 69.5
+ quantile-u 64.0 65.4 66.6 66.5 67.0 66.4 66.1 64.1
+ quantile-uW 64.4 64.9 67.5 67.8 66.6 67.4 65.9 63.4
+ whiten 57.9 59.9 58.3 56.5 55.2 58.9 58.6 51.4
+ whitenW 61.9 61.4 66.2 67.7 66.7 65.5 66.7 63.3
+ zscore 63.5 63.3 66.1 66.4 65.7 65.9 65.6 63.9

idfTt 63.2 64.9 66.4 67.4 65.9 66.2 66.0 61.3
+ normalize 64.7 64.7 67.7 68.6 65.9 68.3 67.7 67.4
+ quantile-u 65.2 65.5 68.5 67.9 67.5 66.6 67.0 63.7
+ quantile-uW 64.8 66.2 67.7 67.3 67.3 67.1 67.2 62.9
+ whiten 58.8 59.2 58.7 59.0 55.6 57.7 58.5 55.1
+ whitenW 60.1 60.4 65.1 66.7 64.8 65.8 65.8 61.2
+ zscore 63.8 65.0 66.4 67.6 66.3 66.0 66.3 62.1

-biases 63.2 64.1 66.0 66.3 65.7 65.7 65.3 62.0
+ normalize 62.6 63.4 66.3 66.8 65.8 67.0 66.8 67.1
+ quantile-u 64.8 65.1 66.7 68.0 67.7 65.7 65.4 64.0
+ quantile-uW 64.4 65.5 67.1 67.4 66.7 66.5 66.7 64.1
+ whitenW 60.9 61.6 66.0 66.4 65.2 63.9 65.5 63.2
+ whiten 61.3 60.3 59.2 59.2 57.6 57.3 57.1 56.9
+ zscore 63.8 64.9 65.7 66.7 66.1 65.3 65.0 62.7

[MASK] 45.5 56.0
+ normalize 45.9 56.5
+ quantile-u 47.8 56.2
+ quantile-uW 46.9 56.4
+ whiten 53.4 53.1
+ whitenW 43.0 53.3
+ zscore 47.0 56.0
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Table 17: Clustering accuracy dependence on token aggregation and post-processing tech-
niques for the searchsnippets dataset. The best result for each model is bolded, while
underlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 67.3 73.3 72.2 70.8 63.6 72.0 72.0 23.3
+ normalize 68.2 73.8 81.7 73.1 65.7 76.4 76.3 20.4
+ quantile-u 69.8 72.4 74.1 73.0 66.8 75.2 72.9 22.3
+ quantile-uW 69.7 73.5 81.6 74.7 68.6 75.7 75.1 21.7
+ whiten 33.8 36.1 32.3 31.7 26.3 22.9 24.8 21.2
+ whitenW 47.7 49.2 58.3 61.8 56.3 58.8 58.3 24.0
+ zscore 67.9 73.2 72.7 71.3 63.7 72.3 72.1 22.8

idfWt 67.1 67.0 71.9 70.4 63.0 69.9 69.9 29.2
+ normalize 68.4 69.4 81.8 73.0 65.2 81.4 81.4 36.6
+ quantile-u 70.3 71.6 73.8 72.5 65.9 74.4 72.2 30.7
+ quantile-uW 70.8 72.5 80.6 74.0 67.1 74.8 80.7 32.1
+ whiten 32.7 34.8 33.0 31.7 23.7 27.3 24.1 20.5
+ whitenW 47.8 51.9 64.5 66.1 61.9 67.6 68.5 30.0
+ zscore 69.8 70.0 72.2 70.4 62.7 70.1 70.2 29.7

idfTt 55.1 75.3 72.0 70.5 59.3 72.0 72.0 26.1
+ normalize 63.2 75.6 81.2 76.9 60.9 76.4 76.3 24.8
+ quantile-u 68.8 78.5 74.6 76.1 59.1 75.2 72.9 26.1
+ quantile-uW 71.2 78.7 81.3 77.0 61.0 75.7 75.1 25.8
+ whiten 30.6 35.7 30.8 29.8 25.0 22.9 24.8 21.3
+ whitenW 46.8 46.1 62.7 63.0 52.9 58.8 58.3 26.7
+ zscore 68.6 79.1 73.3 72.4 59.0 72.3 72.1 25.8

-biases 66.5 70.4 82.6 73.0 71.7 70.5 71.9 22.8
+ normalize 67.0 70.5 82.9 74.8 73.8 75.2 80.9 22.6
+ quantile-u 68.8 80.3 80.7 73.8 72.3 73.5 73.8 23.8
+ quantile-uW 69.8 80.6 82.6 76.5 74.2 75.6 72.7 22.9
+ whitenW 48.4 46.0 64.5 64.4 54.9 57.1 53.6 23.9
+ whiten 31.6 36.3 33.2 29.3 22.7 23.3 23.9 22.0
+ zscore 67.6 79.8 82.1 72.6 71.4 72.6 72.6 23.3

[MASK] 61.1 69.9
+ normalize 61.0 69.6
+ quantile-u 60.3 69.6
+ quantile-uW 61.4 69.8
+ whiten 31.1 34.0
+ whitenW 39.4 45.3
+ zscore 61.8 69.8
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Table 18: Clustering accuracy dependence on token aggregation and post-processing tech-
niques for the stackoverflow dataset. The best result for each model is bolded, while un-
derlined result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 25.0 30.9 35.9 43.5 41.9 14.8 20.2 39.2
+ normalize 25.4 30.7 36.9 42.8 42.3 15.0 20.7 39.0
+ quantile-u 27.8 32.7 38.3 45.9 45.1 14.7 20.5 38.6
+ quantile-uW 25.7 32.4 38.4 46.9 47.9 15.0 20.4 40.0
+ whiten 39.8 39.7 34.2 17.8 13.0 9.8 12.6 12.2
+ whitenW 28.9 33.9 49.4 57.3 62.0 21.7 23.5 56.6
+ zscore 26.7 33.1 37.3 44.2 43.6 14.0 19.8 39.2

idfWt 28.6 29.8 30.6 37.7 39.1 16.1 17.5 55.4
+ normalize 29.0 30.3 31.1 37.2 38.0 16.8 18.6 62.7
+ quantile-u 29.8 31.1 32.0 38.1 40.7 16.8 17.5 57.7
+ quantile-uW 30.0 30.9 32.1 39.9 40.8 16.3 18.0 58.8
+ whiten 30.6 30.1 26.1 15.4 12.2 9.7 9.7 12.5
+ whitenW 29.8 31.4 40.0 50.3 55.8 16.2 17.1 56.8
+ zscore 30.2 30.6 31.1 37.4 38.7 16.1 16.8 54.1

idfTt 36.2 39.0 54.2 63.4 60.5 14.8 20.2 61.6
+ normalize 36.9 38.6 55.1 66.6 62.4 15.0 20.7 70.6
+ quantile-u 38.7 40.7 57.1 64.3 63.1 14.7 20.5 63.7
+ quantile-uW 38.6 40.0 57.7 65.6 63.0 15.0 20.4 65.2
+ whiten 43.5 44.6 32.1 19.7 16.6 9.8 12.6 16.7
+ whitenW 35.7 36.7 59.9 63.1 58.7 21.7 23.5 61.6
+ zscore 38.3 40.6 54.5 62.0 58.9 14.0 19.8 60.7

-biases 28.5 34.5 44.8 56.7 59.7 14.3 18.2 53.9
+ normalize 28.4 35.3 45.2 57.0 58.7 14.6 19.4 63.6
+ quantile-u 31.0 36.8 44.5 56.7 59.3 14.0 19.0 58.0
+ quantile-uW 30.8 35.5 46.4 59.9 60.6 14.8 19.3 57.4
+ whitenW 35.1 36.1 55.4 62.8 61.0 21.0 20.9 52.2
+ whiten 42.6 38.7 21.4 15.7 11.3 8.0 11.6 11.3
+ zscore 31.5 36.9 45.2 57.5 57.9 13.4 18.5 53.0

[MASK] 26.4 35.5
+ normalize 26.5 36.1
+ quantile-u 26.0 37.7
+ quantile-uW 24.9 37.0
+ whiten 22.7 41.0
+ whitenW 18.0 32.2
+ zscore 27.3 37.4
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Table 19: Clustering accuracy dependence on token aggregation and post-processing tech-
niques for the tweet dataset. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 47.0 48.2 51.8 54.1 50.7 51.7 51.7 46.5
+ normalize 46.2 48.3 53.0 53.2 52.4 53.7 55.2 56.4
+ quantile-u 46.6 48.5 51.9 53.9 51.7 50.8 52.9 48.2
+ quantile-uW 46.9 48.0 53.6 53.4 53.0 51.4 51.1 47.8
+ whiten 15.9 16.3 15.9 17.0 18.5 18.1 17.2 17.6
+ whitenW 44.9 44.1 51.1 51.2 51.7 50.5 49.9 49.0
+ zscore 47.5 49.0 53.0 53.3 51.4 50.0 50.5 46.4

idfWt 48.6 47.2 50.5 52.1 48.5 49.4 50.8 45.4
+ normalize 48.3 47.8 51.9 52.7 48.5 50.3 50.4 51.5
+ quantile-u 49.0 47.9 52.7 51.9 48.8 49.8 49.9 46.4
+ quantile-uW 48.3 47.9 52.7 52.8 48.3 49.4 49.6 46.0
+ whiten 15.3 15.1 15.7 16.2 18.3 17.4 17.0 15.9
+ whitenW 43.0 42.3 50.0 50.8 50.1 49.8 49.3 45.5
+ zscore 49.3 46.7 52.2 51.4 48.0 48.9 49.1 46.3

idfTt 50.8 50.5 55.0 55.2 54.5 51.7 51.7 49.0
+ normalize 49.6 50.6 55.1 54.7 53.6 53.7 55.2 58.5
+ quantile-u 49.7 51.0 53.5 54.3 53.7 50.8 52.9 50.5
+ quantile-uW 50.0 52.3 53.4 54.8 53.3 51.4 51.1 51.7
+ whiten 17.6 18.0 15.5 16.5 18.2 18.1 17.2 17.6
+ whitenW 44.4 46.6 51.9 53.2 54.0 50.5 49.9 48.8
+ zscore 49.7 50.0 53.5 55.4 53.8 50.0 50.5 47.8

-biases 47.1 49.6 52.4 52.3 51.7 49.6 49.6 48.0
+ normalize 47.3 49.3 54.0 55.7 53.4 51.3 51.3 55.1
+ quantile-u 47.9 50.4 53.0 55.6 53.4 48.6 50.7 48.2
+ quantile-uW 48.8 50.0 53.4 54.4 53.5 50.0 49.0 47.4
+ whitenW 45.9 46.0 52.2 53.0 53.3 47.3 47.5 47.4
+ whiten 16.3 16.9 16.4 17.4 18.7 18.7 17.7 18.5
+ zscore 47.3 49.4 52.0 53.5 53.2 48.3 49.0 47.4

[MASK] 41.1 47.0
+ normalize 41.0 47.1
+ quantile-u 42.0 47.7
+ quantile-uW 41.9 47.4
+ whiten 14.9 16.6
+ whitenW 38.4 41.7
+ zscore 41.6 46.7
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A.2 BERT + Avg. Model in Different Layers
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Figure 6: BERT + Avg. model individual task STS performance dependence on the weight
w of Avg. model and layer, from which (for both models) representations are used. To the
right of the black line on the horizontal axis, average aggregation of multiple layers is also
shown. Tokens are simply averaged and no post-processing is used. The horizontal line
with w = 0.0 corresponds to a regular Bert (B) model, w = 0.5 is B + Avg., and w = 1.0
is the Avg. model. The white × marks the maximum value.
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Figure 7: BERT + Avg. model individual task clustering performance dependence on the
weight w of Avg. model and layer, from which (for both models) representations are used.
To the right of the black line on the horizontal axis, average aggregation of multiple layers
is also shown. Tokens are simply averaged and no post-processing is used. The horizontal
line with w = 0.0 corresponds to a regular Bert (B) model, w = 0.5 is B + Avg., and
w = 1.0 is the Avg. model. The white × marks the maximum value.
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Figure 8: BERT + Avg. model individual task supervised classification performance de-
pendence on the weight w of Avg. model and layer, from which (for both models) represen-
tations are used. To the right of the black line on the horizontal axis, average aggregation
of multiple layers is also shown. Tokens are simply averaged and no post-processing is used.
The horizontal line with w = 0.0 corresponds to a regular Bert (B) model, w = 0.5 is B +
Avg., and w = 1.0 is the Avg. model. The white × marks the maximum value.
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