
Frontiers in Reservoir Computing

Claudio Gallicchio1, Mantas Lukoševičius2, Simone Scardapane3
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Abstract. Reservoir computing (RC) studies the properties of large
recurrent networks of artificial neurons, with either fixed or random con-
nectivity. Over the last years, reservoirs have become a key tool for pattern
recognition and neuroscience problems, being able to develop a rich repre-
sentation of the temporal information even if left untrained. The common
paradigm has been instantiated into several models, among which the Echo
State Network and the Liquid State Machine represent the most widely
known ones. Nowadays, RC represents the de facto state-of-the-art ap-
proach for efficient learning in the temporal domain. Besides, theoretical
studies in RC area can contribute to the broader field of Recurrent Neural
Networks research by enabling a deeper understanding of the fundamental
capabilities of dynamical recurrent models, even in the absence of train-
ing of the recurrent connections. RC paradigm also allows using different
dynamical systems, including hardware, for computation.

This paper is intended to give an overview on the RC research field, high-
lighting major frontiers in its development and finally introducing the con-
tributed papers to the ESANN 2020 special session.

1 Introduction

The success of deep learning can be attributed to two factors. Firstly, the
architecture of modern deep networks, which allows them to encode important
biases on the data processing, e.g., convolutional filtering operations for images,
attention for sequences. Secondly, their training mechanisms, providing a simple
and effective way of adapting most internal parameters through gradient descent.

Reservoir computing (RC) [1, 2], and Echo State Networks (ESNs) [3, 4] in
particular, were originally proposed as a way to overcome the training difficulties
of classical recurrent neural networks (RNNs) [5, 6, 7]. They do this by consid-
ering only fixed (i.e., non-trainable) recurrent components, allowing to reduce
the training process to a linear regression. Because ESNs lend themselves easily
to formal characterizations, there is a vast literature underscoring the dynamics
and memory capacity of this class of networks.

Despite the training simplification, RC remains today, even after years of im-
portant breakthroughs in fully-trainable neural networks, an essential research
field with many important open questions and frontiers of development. Among
other things, it sheds light on the relative importance of model structure versus
training algorithms of different shallow or deep architectures. Without the pre-
tension of being exhaustive, this tutorial paper touches on some of the recent
lines of RC research that are particularly appealing, focusing on mathematical



foundations, deep models and RC for structured data. It also introduces the
papers presented at the Frontiers in Reservoir Computing special session of the
ESANN 2020 conference.

This paper is organized as follows. We first provide an introduction to the
basics of RC in Section 2. Then, we briefly discuss some major recent research
directions in RC in Section 3. Finally, the papers presented at the special session
are introduced in Section 4.

2 Reservoir Computing

The field of RC [1, 2] originated in 2001 with Liquid State Machines (LSMs) [8]
from a computational neuroscience side and ESNs [3, 4] from a machine learning
side as a simplified way of training Recurrent Neural Networks (RNNs), where
the recurrent part does not need to be adapted as long as it is generated following
certain rules.

A typical ESN update equation is [9]

x(n) = (1− α)x(n− 1) + α tanh
(
Win[1;u(n)] + Wx(n− 1)

)
, (1)

where α ∈ (0, 1] is the leaking rate, x(n) ∈ RNx are reservoir activations, u(n) ∈
RNu is the input, both at time step n, tanh(·) is applied element-wise, [·; ·] stands
for vector concatenation, Win ∈ RNx×(1+Nu) and W ∈ RNx×Nx are the input
and recurrent weight matrices respectively. The recurrent part (1) is called the
reservoir (hence “reservoir computing”). An ESN typically has a linear readout
layer from the reservoir

y(n) = Wout[1;u(n);x(n)], (2)

where y(n) ∈ RNy is the network output and Wout ∈ RNy×(1+Nu+Nx) is the
output weight matrix. A graphical depiction of the ESN structure and training
is presented in Figure 1.
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Fig. 1: An echo state network [9].

Typically Win and W weights are generated randomly using some heuristic
rules [9] based on conditions for asymptotic stability of reservoir dynamics, com-
monly known under the name of the echo state property [4, 10]. The elements
of Wout are the only weights trained. Since there is no recurrence in the trained



part, Wout can be computed in one go using linear regression after running the
reservoir with the data u(n) and collecting [1;u(n);x(n)] with corresponding
target outputs ytarget(n) for all training time n [9].

In subsequent years the RC framework for RNN training, that conceptually
separated the recurrent reservoir from the readout, became a fruitful platform
for analysing RNNs and proposing numerous modifications and extensions to
the original RC methods [2, 11].

3 Frontiers

In this section we briefly discuss some potentially groundbreaking recent devel-
opments of RC research, warning the reader that the touched list of topics is far
from being exhaustive for obvious reasons of brevity.

A large amount of research work in RC is building on its efficiency and pro-
viding even more efficient implementations. Since the reservoir can be random,
it is susceptible to implementations in exotic hardware dynamical systems that
are not necessarily programmable in the classical digital sense, including analog
electronic, photonic, mechanical, biological, etc. Hardware RC implementations
have lately become a very active interdisciplinary research area that is beyond
the scope of this short overview. For this we refer the readers to a recent review
[12]. At the same time, the efficient training of the readouts has been recently
further improved to add a time series cross-validation with minimal additional
computational costs [13]. This enables cross-validation to became a standard
practice in RC for a more reliable model and hyper-parameter selection.

A major strand of research in the field is focused on the mathematical foun-
dations of RC networks. This kind of studies is enlightened by the fact that
learning is restricted to a particularly simple readout part, and the emerging
properties of the dynamical recurrent layer can be more easily studied and high-
lighted exploiting, e.g., the theory of filters or the theory of dynamical systems.
A fundamental question is that of universality, i.e., the identification of the class
of transformations that can be accurately approximated by RC networks. Pre-
vious works in this direction focused on continuous time cases in the formalism
of LSMs [14], exploiting the properties of filters with fading memory. Recently,
a number of fundamental results have been introduced in the literature for to
the case of discrete time systems described by the ESN-style formalism. In [15]
it was proven that ESNs can approximate any fading memory filter. This result
was later extended by the same authors in [16], where they showed analogous
properties for several classes of RC models. This includes non-linear reservoirs
parametrized as trigonometric state affine systems with linear readout, and, in-
terestingly, even linear reservoirs provided that the output is computed by either
a polynomial readout or by a multi-layer perceptron. Relevantly, these studies
attempt to give a unified view over some of the most fundamental properties
of reservoir systems: the fading memory property [17], the pairwise separation
property [18], and the echo state property [4, 10].

Another line of theoretical studies focuses on conditions that would ensure



stability of the reservoir dynamics in presence of external driving inputs. Here
the goal is to analyze the quality of the reservoir dynamics studied as a non-linear
and non-autonomous dynamical system [19, 20, 21]. Interesting results in this
regard were recently introduced in [22], were the concept of echo state property
was found to have profound implications in terms of robustness to inputs more in
general for RNNs. The analysis of (parameters) and input perturbations has in
this context an important role, which can be used to identify the boundaries of
echo state property validity (as a function of the specific input). From a practical
perspective, the work in [23] introduced an index of asymptotic synchronization
of the reservoir state trajectories. More recently, in [24] a further index of
reservoir stability has been proposed, with the aim of measuring the number of
local point attractors of dynamics.

Deep RC defines another increasingly popular line of research. Early works
in this direction [25, 26, 27, 28] already showed the merits of hierarchically
combining multiple ESN architectural components, somehow anticipating the
surge of works on deep recurrent neural architectures [29, 30, 31]. A great appeal
of deep RNNs is that they enable to treat multiple time-scales (and, in general,
multiple temporal views at different granularities) in a natural fashion. The
recent results on Deep Echo State Networks (DeepESNs) [32], actually showed
that such ability is indeed intrinsic to the architectural design of stacked RNNs,
i.e., it is a bias of deep recurrent neural systems. Properly designed deep RNNs
even without (or prior to) learning of recurrent connections are already able
to outperform state of the art methodologies in complex tasks on time series,
such as polyphonic music and speech processing [33]. Compared to the case of
standard shallow reservoirs of ESNs described in (1), a deep reservoir can be
described as a pipeline of non-linear systems, where the state update equation
in each layer l is given by

x[l](n) = (1−α[l])x[l](n−1)+α[l] tanh
(
Win[l][1;u[l](n)] + W[l]x[l](n− 1)

)
, (3)

where the superscript [l] indicates that the quantity is referred to the l-th layer.
Crucially, for l = 1 the driving input is the external signal, i.e. u[l](n) = u(n),
while each successive layer is driven by the activation of the previous one, i.e.,
u[l](n) = x[l−1](n) for l > 1. Conditions for the valid initialization of the set
of input and recurrence matrices are given in [34]. Further RC approaches to
the design of deep models for time-series processing have been introduced in
[35, 36, 37].

Finally, dynamical recurrent models based on RC can find applications also
in more general contexts where the nature of the data is more complex than time-
series or sequences. A domain of particular interest in the current development
of machine learning is that of graph data, where the information to be processed
is represented in terms of entities and relations among them. The interested
reader can find a primer introduction to the field of deep learning for graphs in
[38]. In this context, reservoir systems can be used as alternative solutions to
commonly adopted convolutional neural networks for graphs, with the striking
advantage of a parsimonious training algorithm [39]. The basic idea is to extend



the operation of the standard reservoir system to operate on discrete graph
structures, where the role played by time-steps is now taken by the vertices of
the input structure, and the relation of “previous time-step” is now generalized
to the concept of neighborhood:

x(v) = tanh

Win[1;u(v)] +
∑

v′∈N (v)

Wx(v′)

 . (4)

In (4), v denotes a vertex in the input graph, u(v) is a vector of features associ-
ated to it, and N (v) is the neighborhood of v (i.e., the set of vertices adjacent to
v). In this way, it is possible to encode each input graph as the stationary state
of a reservoir dynamical system. Recently, an extension of the above described
approach in the direction of deep RC has been presented in [40], where deep
reservoir for graphs enable the design of fast and deep graph neural networks
achieving state of the art performance on graph classification problems with
small training costs.

4 Special Session Papers

This section introduces the papers presented at the ESANN special session,
contributing to the advancements of RC research under several perspectives.
Reservoir memory machines. The authors of [41] study RC systems in the
context of memory augmented neural networks, by proposing a Neural Turing
Machine (NTM) [42, 43] architecture in which the learned RNN controller is
substituted by an ESN. The contribution can be seen as both an NTM alternative
that is faster to be trained, and as an extension of the standard ESN, augmented
with an external memory unit. The preliminary experimental analysis presented
in the paper shows that Reservoir Memory Machines are able to solve some
simple tasks typical of NTM, going beyond the performance achievable by simple
ESNs.
Pyramidal Graph Echo State Networks. In [44] reservoirs are considered in
the context of deep learning for graphs. In particular, the authors propose a deep
architecture comprising multiple graph reservoir layers interleaved by pooling
operations, exploring different graph coarsening approaches. Interestingly, the
paper introduces the concept of pooling in fully untrained neural architectures
for graphs. The results show that the proposed approach offers a particularly
advantageous trade-off, allowing to further reduce the burden of training (with
respect to the already efficient deep RC for graphs) at the cost of a small decrease
in classification accuracy.
Simplifying Deep Reservoir Architectures. The paper [45] is positioned in
the research line on deep RC. Specifically, the authors investigate progressively
simplifications to the construction of a DeepESN, where each reservoir layer is
constrained to a ring topology, and the connections from the external input, and
those in between consecutive reservoir layers, are constructed in a deterministic
fashion. The resulting RC model transfers the idea of minimal ESNs [46] to



the case of deep architectures. The experimental results presented in the paper
indicate the practical advantages of the introduced minimal deep RC design.
Self-organized dynamic attractors in recurrent neural networks. In
[47], the authors study the properties of the attractors of reservoir dynamical
systems in an unsupervised learning setting. In their analysis, they consider an
RC system with additional reservoir recurrence connections that are adapted
with differential Hebbian learning [48]. Experiments in an example setup show
the emergence of different kinds of dynamics, with a prevalence of periodic and
quasi-periodic attractors. The study is proposed in the perspective of introduc-
ing mechanisms based on self-organization for developing persistent memory in
physical RC systems [49, 50].
Self-Organizing Kernel-based Convolutional Echo State Network for
Human Actions Recognition. The authors of [51] propose a hierarchical RC
architecture based on convolutional ESN, where the reservoir states over time
are processed by a convolution level followed by a max over time pooling and
by an output level. Interestingly, the reservoir weight matrices Win and W
are determined by a preliminary phase of unsupervised adaptation using a self-
organizing algorithm. The resulting approach is demonstrated on problems in
the area of skeleton-based human action recognition.
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[26] Mantas Lukoševičius. Self-organized reservoirs and their hierarchies. In International
Conference on Artificial Neural Networks, pages 587–595. Springer, 2012.

[27] Fabian Triefenbach, Azarakhsh Jalalvand, Benjamin Schrauwen, and Jean-Pierre
Martens. Phoneme recognition with large hierarchical reservoirs. In Advances in neural
information processing systems, pages 2307–2315, 2010.

[28] Fabian Triefenbach, Azarakhsh Jalalvand, Kris Demuynck, and Jean-Pierre Martens.
Acoustic modeling with hierarchical reservoirs. IEEE Transactions on Audio, Speech,
and Language Processing, 21(11):2439–2450, 2013.



[29] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with
deep recurrent neural networks. In 2013 IEEE international conference on acoustics,
speech and signal processing, pages 6645–6649. IEEE, 2013.

[30] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to con-
struct deep recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013.

[31] Michiel Hermans and Benjamin Schrauwen. Training and analysing deep recurrent neural
networks. In Advances in neural information processing systems, pages 190–198, 2013.

[32] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep reservoir computing: A
critical experimental analysis. Neurocomputing, 268:87–99, 2017.

[33] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Design of deep echo state networks.
Neural Networks, 108:33–47, 2018.

[34] Claudio Gallicchio and Alessio Micheli. Echo state property of deep reservoir computing
networks. Cognitive Computation, 9(3):337–350, 2017.

[35] Filippo Maria Bianchi, Simone Scardapane, Sigurd Løkse, and Robert Jenssen. Bidirec-
tional deep-readout echo state networks. Proceedings of ESANN, 2018. arXiv preprint
arXiv:1711.06509.

[36] Stefano Nichele and Andreas Molund. Deep learning with cellular automaton-based reser-
voir computing. 2017.

[37] Xiaochuan Sun, Tao Li, Qun Li, Yue Huang, and Yingqi Li. Deep belief echo-state network
and its application to time series prediction. Knowledge-Based Systems, 130:17–29, 2017.

[38] Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction
to deep learning for graphs. arXiv preprint arXiv:1912.12693, 2019.

[39] Claudio Gallicchio and Alessio Micheli. Graph echo state networks. In The 2010 Inter-
national Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2010.

[40] Claudio Gallicchio and Alessio Micheli. Fast and deep graph neural networks. In Pro-
ceedings of AAAI 2020, 2020. arXiv preprint arXiv:1911.08941.

[41] Benjamin Paassen and Alexander Schulz. Reservoir memory machines. In Proceedings of
ESANN, 2020.

[42] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[43] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
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