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Abstract
Large Language Models (LLMs) with billions of parameters are known for their impressive predicting
capabilities but require lots of resources to run. With their massive rise in popularity, even a small
reduction in required resources could have an impact on environment. On the other hand, smaller models
require fewer resources but may sacrifice accuracy. In this work, we are proposing an implementation
of “stairs” assisted greedy generation. It is a modified assisted generation methodology that makes use
of a smaller model’s fast generation, large model’s batch prediction, and “stairs” validation in order to
achieve a speed up in prediction generation. Results show between 9.58 and 17.24 percent inference time
reduction compared to a stand-alone large LLM prediction in a text generation task without a loss in
accuracy.
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1. Introduction

Large Language Models (LLMs) with billions of parameters are known for their impressive
predicting capabilities but require lots of resources (hardware, computation time, energy) to
run. With their rapid rise in popularity, this is also becoming an environmental issue, among
others. Even a small reduction in required resources can have a big global impact. On the other
hand, smaller models require fewer resources but may sacrifice accuracy.
In this work, we explore a solution that combines the strengths of both a large and a small

language models, aiming to have faster inference without reducing the accuracy of prediction.
We propose a novel code implementation of a methodology for inference time reduction. The
idea is that the smaller model generates several tokens in advance and “stairs” batch validation
detects how many next token predictions can the main LMM skip. It exploits the fact that an
LMM can generate several similar independent next token predictions (a batch) in a single
iteration in parallel with relatively small computational overhead compared to a single prediction.
This saves expensive iterations for the main model in exchange for several significantly cheaper
predictions from a smaller model. We are calling it a “stairs” assisted greedy generation. Results
indicate between 9.58 and 17.24 percent inference time improvement for text generation without
sacrificing accuracy compared to text generation by a single LLM itself.
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In Section 2, we explain inspiration, related works, and models fused for our experimentation.
Section 3 contains explanations about LLMs’ next token prediction towards workings of “stars”
assisted greedy generation. Section 4 contains all the relevant information about the experiments
and results. Finally, Section 5 summarises conclusions and provides directions for future works.

2. Literature review

This section contains information about the inspiration for the experiments, related research,
and models used in experimentation.

2.1. Inspiration

The idea for experimentation was greatly inspired by a tweet written by Andrej Karpathy
[1]. The main ideas are that batch prediction has a similar or marginally higher retrieval cost
compared to a single prediction, large models have a memory bottleneck when predicting, and,
assuming we have some computing power remaining, assistant models could generate extra
prompts to use with batch prediction.

2.2. Related works

Recent research has explored various approaches to accelerate inference in large language mod-
els. Notably, Google [2] proposed speculative decoding, a technique that utilizes a combination
of smaller models and rejection sampling, a technique that picks points from an easy-to-sample
distribution, removes them if they do not fit the target distribution, and repeats until it gets
enough good ones [3], to generate multiple candidate tokens in parallel from a large autoregres-
sive model. Specifically, this approach allowed the T5-large model (770 million parameters) [4]
to achieve between 1.4 and 1.7 times speedup in English to German translation task of WMT
2018 [2] returning identical outputs.

Additionally, DeepMind [5] introduced speculative sampling with a focus on leveraging small
models to parallelize token generation from a larger target LLM. Their method employs a novel
rejection sampling scheme to ensure the generated text adheres to the highest next token in
a probability distribution of the sequence. For Chinchilla (70 billion parameters) model [6]
with an undisclosed 4 billion parameters assistant model, the proposed methodology achieved
between 1.92 and 2.04 times of speedup for The Extreme Summarization (XSum) [7] task while
empirically verifying that outputs come from the same distributions for regular and speculative
sampling inferences.
In contrast to these speculative decoding and sampling methods, our initial focus was only

to explore a greedy generation solution. At the end of the works, the closest available imple-
mentation was identified from HuggingFace [8] research in their Transformers library-assisted
generation. A flan-t5-large (780 million parameters) model, which, in short, is a fine-tuned
t5-large version [9] with flan-t5-small (60 million parameters) assistant model using a proposed
methodology achieved 25.91 percent speedup for “CNN Dailymail” task of articles summarisa-
tion [10]. Additionally, for a flan-t5-xl (3 billion parameters) model with the same, flan-t5-small



model assistant, assisted generation achieved 26 percent inference improvement for the same
task. Final accuracy was not described.

For ourwork, the accuracy ofmodels was testedwith BLEU (BiLingual Evaluation Understudy)
score [11] in the range from 0 to 100, where 75-100 stands for a perfect score, with 100 being an
identical match.

2.3. Models

In experiments we selected a group of autoregressive T5 (Text-to-Text Transfer Transformer)
models [4]:

• T5-small – 60 million parameter version. Used as an assistant model.
• T5-large – 770 million parameters. Used as the main model for T5-large experiments.
• T5-3B – 3 billion parameters. Used as the main model for T5-3B experiments.

The main reason for this selection was to recreate a similar environment where previous
experiments – Google’s speculative decoding with T5-large and HuggingFace’s assisted genera-
tion with flan-t5-large and xl – were run. Additionally, DeepMind’s Chinchilla model and its
quantized and pruned versions were not considered due to the huge size and unknown assistant
model.

3. Methodology

This section explains the next token prediction using LLMs, amethodology of assisted generation,
and the proposed “stairs” assisted greedy generation.

3.1. Large language model next token prediction

Figure 1: An abstract example of the LLM next token prediction. The token “cute” is chosen because it
has the highest probability in the vocabulary. The probability is calculated based on a given input.

In abstract terms, a large language model uses given tokens as input and estimates the next
best token from the vocabulary using its learned knowledge. For example, given the text “My
dog is” as an output we might receive “My dog is cute” as a result because the token “cute” will
have the largest probability to be chosen. This is illustrated in Figure 1.
Essentially, by repeating this step the model predicts a full sequence and returns the final

output. An example can be seen in Figure 2. So if the model is large and relatively slow,
generating each token takes a noticeable amount of time and resources. This is where assisted
generation comes to help.



Figure 2: An abstract example of the LLM next several tokens prediction. Specifically, showing how the
model greedily chooses the next token in each iteration. This example took 3 iterations.

3.2. Assisted generation

Assisted generation is based on a speculative execution optimization technique which in short
could be described as a methodology where the processor performs several tasks in advance in
order to have the results faster when such are needed [12].

Figure 3: An abstract example of the LLM next several tokens prediction with an assistant model
emphasizing how the assistant model generates several tokens in advance. The large model keeps only
those tokens that are greedily matched, and using them generates the following tokens. This example
took one large model iteration.

In the assisted generation case, a smaller – assistant – model performs predictions for one or
several next tokens and gives generated prompts as input for the main model. Such prompts
are evaluated by checking them one by one, from left to right while only keeping the ones that
match greedily with their highest probability in the vocabulary. This step is repeated adding
one more token each time until they run out or mismatches are found. After such input is
ready, the model as usual predicts the next token. Such a cycle repeats until the prompt is fully
responded to.

For performance gains, if any of the smaller model predicted tokens are accepted this removes
one loop of iteration from the main model. This is illustrated in Figure 3.



3.3. “Stairs” assisted greedy generation

In “stairs” assisted generation, the initial steps for an assistant model are identical – a smaller
model generates a prompt. Next, the initial sentence is broken down into subsequences that
start with the first word and progressively include one more token until the full prompt is
reached. All of them are combined in the same order as the batch. The matrix is given to the
main model and then the generated output contains one additional token for each sequence. A
visual representation can be seen in Figure 4.

Figure 4: An abstract example of the LLM next several tokens prediction with “stairs” batch prediction
of an assistant model emphasizing how the assistant model generates several tokens in advance and
puts them into the batch. The large model predicts each of them individually. After prediction, “stairs”
greedy selection is applied and only validated tokens are kept. This example took one iteration of the
large model to generate the final result.

After the output is received, “stairs” batch validation is performed. The “stairs” batch valida-
tion is inspired by incremental validation and teacher forcing algorithm. The algorithm trains
recurrent networks by providing observed values as inputs during training [13]. In our case,
instead of training we perform validation with a matrix of sequences and are also providing
already predicted values. The testing design of incremental validity [14], in our case, is applied
for every comparison between two sequences. Only if they match, excluding a last token of a
second sequence, we update the ground truth with the last token of a second sequence.
The “stairs” batch validation begins with the very first vector being set as the ground truth.

The following vector is validated using the current ground truth to check the vocabulary. If the
check is successful, a new ground truth is set. The process continues until the model checks
each sequence or ground truth does not match the next sequence. The ground truth is returned
as an output. All this sequence is illustrated in Figure 5.

The main benefit of such methodology is that in cases where inference limitations come from
the slowness of information retrieval, for a marginal latency increase a significantly increased
throughput can be obtained [8]. A prerequisite for such a trade-off is to have similar prompts
in the batch. The general idea why this works is that cached model weights are reused for the
similar inputs instead of reloading weights each time [15].



Figure 5: “Stairs” greedy validation example that is applied after the main model predicts a given batch.
The first vector is taken as a ground truth, at the same time approving tokens vertically below. Next
vector’s final token is checked against the vocabulary and if approved new ground truth is set. The
process continues until the end of a batch or when the ground truth does not match the next vector
prediction. The final ground truth is returned as a final output for a given prediction iteration.

4. Experiments and results

This section contains information about a general setup, the two main experiments: T5-large
and T5-3B, and their results.

4.1. Experiments setup

Both experiments had a single main model: either T5-large or T5-3B. Each experiment had two
stages:

1. “Stairs” assisted greedy generation best batch size analysis.
2. Main model versus HuggingFace assisted generation versus “Stairs” assisted greedy

generation model text prediction.

HuggingFace did not have a batch size analysis step since it sets it dynamically.
Testing environment: MacBook PROM2, 32GB RAM. Functional code is implemented reusing

HuggingFace transformers library [16] and modifying Greedy generation code path.

4.2. Input data

Each experiment was tested with a single prompt: “translate English to German: My dog is
cute.”. The main reasons for this choice was to have a faster start testing implementation and it
was one of the most used forms of example prompts in HuggingFace.co.



4.3. T5-large

T5-large with an assistant of T5-small-stairs was tested for the best batch size, checking each
one 100 times after a warmup (one run) against the prompt. The investigation started from
batch size 2 since 1 means predicting the same way as the large model. Results indicate that
batch size has a noticeable effect on model performance, with the best case being batch size 7.
All generated responses score between 75 and 100 in BLEU score. Figure 6 illustrates the results.

Figure 6: T5-large stairs assisted generation model inference time in seconds based on batch size (length
of assistant model prediction) comparison. The figure displays the distribution of resulting inference
times for 100 independent generations of each batch size (1000 runs in total).

After that, three cases were compared:

• Original – T5-large
• HF assisted – HuggingFace T5-large with assistance of T5-small
• Stairs assisted – T5-large with assistance of T5-small-stairs with batch size 7.

Figure 7: Comparison of inference time experiment results for T5-large model. The figure shows a
distribution of resulting inference times for the same text generation task with 3 different methodologies
– a standalone model, HugginFace assisted generation, and “stairs” assisted generation (300 total runs).



Each was run 1000 times after a warmup against the prompt. It can be seen from the results
in Figure 7 that HuggingFace assisted generation, that is 0.4568 seconds, was 5.87 percent faster
than a single T5-model, 0.4853 seconds, with visible distribution of ±0.07 seconds, which in
some cases was slower than a plain original model. “Stairs” assisted generation on average
performed 17.24 percent faster, 0.4016 seconds. Also, it can be seen that it rather consistently
performed either 0.04 seconds slower than average or around the same amount faster than
average. All generated responses score between 75 and 100 in BLEU score.

4.4. T5-3B

Same as for T5-large experiments, the T5-3B experiment began with batch size selection with
the assistance of T5-small-stairs. After running each combination 10 times, same as previously,
results indicate that batch size has a noticeable effect on the results. With the best performance
being a batch size of 6. All generated responses score between 75 and 100 in BLEU score. This
can be seen in Figure 8.

Figure 8: T5-3B stairs assisted generation model inference time in seconds based on batch size (length
of assistant model prediction) comparison. The figure displays the distribution of resulting inference
times for 10 independent generations of each batch size (100 runs in total).

Next, these three cases were compared:

• Original – T5-3B
• HF assisted – HuggingFace T5-3B with assistance of T5-small
• Stairs assisted – T5-3B with assistance of T5-small-stairs with the batch size of 7 (being
consistent with T5-large experiments).

Each was run 100 times after warmup against the prompt. It can be seen from the results
in Figure 9 that HuggingFace assisted generation, that is 0.9517 seconds, was 22.20 percent
faster than a single T5-3B, 1.2232 seconds, with a visible distribution of less than 0.03 seconds.
“Stairs” assisted generation on average performed 9.58 percent faster, 1.1059 seconds. It was also
slightly less consistent than the HuggingFace implementation, mostly varying around ±0.05
seconds. All generated responses score between 75 and 100 in BLEU score.



Figure 9: Comparison of inference time experiment results for T5-3B model. The figure shows a
distribution of resulting inference times for the same text generation task with 3 different methodologies
– a standalone model, HugginFace assisted generation, and “stairs” assisted generation (30 runs in total).

5. Conclusions and discussion

The proposed “stairs” assisted greedy generation implementation indicates the potential to be
a faster inference protocol versus the original model retaining its accuracy. For the T5-large
model, the “stairs” assisted greedy generation was on average 17.24 percent faster, meanwhile,
the HuggingFace implementation was just 5.87 percent faster than the original T5 model. For
T5-3B, the proposed “stairs” assisted greedy generation was around 9.58 percent faster, while
HuggingFace implementation was around 22.20 percent faster. Additionally, for the proposed
implementation, the length of assistant model predictions (batch size) can have up to a 2-time
performance increase. Thus, our “stairs” assisted greedy generation in specific scenarios has
the potential to outperform the production-ready HuggingFace assisted generation.
A proposal to expand these experiments could be using more different prompts: by their

lengths, and task variety, or replacing them with more standard evaluation frameworks. The
testing environment could be upgraded to better fit T5-3B or similar-size models. On the
architectural side, greedy generation could be replaced with sampling, either together for
the assistant and main model or individually. That would unlock the temperature parameter.
Different sizes and architectures of assistant models or even several different assistant models
in parallel could be tested as well.
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