
Automatic programming problem difficulty
evaluation – first results

Artūras Skarbalius1 and Mantas Lukoševičius1[0000−0001−7963−285X]

Faculty of Informatics, Kaunas University of Technology, Kaunas, Lithuania
{arturas.skarbalius,mantas.lukosevicius}@ktu.edu

Abstract. In this work, we address automatic evaluation of the dif-
ficulty of programming problems or exercises. Typically the problems
consist of both text description and accompanying figures. We collect a
suitable dataset, investigate the evaluation based on the text and the
image data separately, as well as a combination of the two. The first re-
sults of this investigation are reported, together with the discussion and
future work.

Keywords: Programming problem · Difficulty evaluation · Natural lan-
guage processing · Convolutional neural network · Deep learning · Ma-
chine learning.

1 Introduction

Programming problems of various kinds are regularly used to teach those in-
terested in programming how to do so effectively in a practical way, and on
occasion, they are also utilized to evaluate or demonstrate the ability of an in-
dividual regarding a particular field.

The issue with these sorts of problems, however, is that compared to other
methods, these kinds of programming problems tend to be comparatively subjec-
tive - there is oftentimes very little objective way to evaluate exactly how difficult
an exercise would be due to those writing them having a different perception of
it compared to everyone else.

This project is an attempt to resolve part of this issue by utilizing machine
learning to evaluate difficulty in regards to programming problems. Utilizing this
system, it should be possible to have a more objective view of a problem and
make it easier to perform the aforementioned teaching and evaluation of skills if
successful.

The problem formulation usually includes both text and images, which makes
this task more difficult, since typically different machine learning methods are
used for the two types of data. Here we attempt to investigate the difficulty
estimation based both on text, rendered image of the problem, and combination
of both.

We review the previous related work in Section 2, explain the data that we
use in Section 3, present our methods used and preliminary results in Section
4, and finally, a short discussion is given, alongside ways to improve it in the
future, in Section 5.



2 A. Skarbalius, M. Lukoševičius

2 Related Work

Here we review the basic approaches and algorithms used for this type of prob-
lem. Due to the unique nature of the task, exact methods for evaluation have
not been fully considered. As such, a wider variety of methods is considered.

2.1 Approaches

There have not been many attempts to approach this problem in particular,
but there have been attempts to achieve results in similar fields. One exam-
ple in particular is an attempt at predicting the difficulty of various questions
in reading problems [5] that utilized a particular framework called the Test-
aware Attention-based Convolutional Neural Network (TACNN). According to
the given results in the paper, the approach does improve on the result by some
amount, and experts generally have lower accuracy on the evaluation than the
resulting neural network.

Another notable approach has been the utilization of a hybrid AI [7] to
evaluate exercise difficulty. To initialize the system, a teacher, as an expert,
needs to input a rule set. After this is done, the feedback of any students that
have taken the exercise is taken and used to adjust the results via a genetic
algorithm. The results obtained from such indicates that a significant portion
of exercises are initially evaluated incorrectly. However, this approach appears
to be flawed - the method used indicates exactly one set of rules per difficulty
level, which is fairly inaccurate to a realistic situation. In addition, if multiple
rules for a single difficulty level are included in the starting rule set, the system
cannot correctly determine which to use as the starting point to adjust from.
According to the article, the rule to be used as a base for the genetic algorithm
to adjust was chosen at random at the time of writing.

Beyond this, there do not appear to be many other methods utilized for tasks
of this nature.

2.2 Algorithms

There are numerous algorithms that can be utilized. As the method we have
been using (detailed in the Methods section) involves both text and images,
there will be two subsections for algorithms associated with both, as well as
another subsection indicating ways to combine multiple methods into one.

Text-Based Evaluation Natural Language Processing (NLP) initially re-
quires some amount of pre-processing for the text [10]. There are multiple parts
of pre-processing that can be utilized, as well as many different methods, so only
a small portion will be mentioned here:

1. Tokenization is a process during which large amounts of text are sepa-
rated and occasionally classified into smaller sections that machine learning
can utilize effectively. Commonly used methods involve separating text by
sentences or separating text by words.



Automatic programming problem difficulty evaluation – first results 3

2. Normalization is a method utilized to improve a system by attempting to
remove redundant words with similar meanings. Stemming, for instance,
is a method used to reduce words to their root form, and lemmatization
removes prefixes and suffixes from words.

As an example, the bag-of-words method gathers all of the tokens obtained
from a text into a “bag” – a format that completely ignores word order and
grammar, but retains the number of times each word has shown up in a text in
a way that a computer can use in the future.

For text-based evaluation, various algorithms can be used. To simplify things,
just some of the useful methods that have been evaluated will be described here.

1. A decision tree [8] is a simple method for classification. It makes use of
multiple true/false statements to form a result. A decision tree classifier in
machine learning forms this sort of tree through the use of training data to
evaluate the exact values necessary. It is commonly used for relative simplic-
ity and effectiveness, and there are several methods to improve the accuracy
of these kinds of methods as well (detailed further under Model combina-
tion). A simple example of the way a decision tree works is shown in Figure
1 – In this case, Y is a binary variable, while the other two variables, X1 and
X2, are used in this case to determine what the result should be.
Once a model is formed, pruning can be performed for the sake of lowering
the redundant or otherwise excessive branches and simplify the resulting
model. While unnecessary, it can help with speed on several occasions.

Fig. 1. Sample decision tree based on binary target variable Y. The image is used
from [8] under the Creative Commons Attribution-NonCommercial-Share Alike 4.0
Unported License.

2. Light Gradient Boosting Machine (LightGBM) [6] is a gradient boost-
ing decision tree (GBDT), designed by Microsoft. In particular, this imple-
mentation adds a couple of techniques: Gradient-based One-Side Sampling



4 A. Skarbalius, M. Lukoševičius

(GOSS), which allows for an accurate information gain with less data, and
Exclusive Feature Bundling (EFB), which bundles mutually exclusive fea-
tures together in a way that would allow for fewer variables that the model
has to look into. Through this, the resulting method is approximately 20
times faster while providing roughly equivalent accuracy.

3. The Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(L-BFGS) [1], is a method to approximate the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm using a limited amount of available memory. Of-
tentimes this method is used for parameter estimation. The algorithm esti-
mates an inverse Hessian matrix to help with determining the exact value.

Some classification methods are only created for the purposes of binary clas-
sification. To change these into multiclass classification, there are two methods
to go about this, in particular [3]:

1. One-vs-All method creates n different versions of the same model, where n
is the number of different classifications available, with each one having two
different possible results - it is one of the available classifiers, or it is any of
the others. When evaluating, the resulting model returns the classifier for
which the model had the highest result. This method is generally faster and
requires less memory to utilize.

2. One-vs-One method creates a different model for each possible combination
of classifiers available, with each one having two of the possible multiple
classifiers available. Once all of the different models finish, the correct answer
is chosen by summing up or averaging all scores, and returning the highest
result. This method is more complicated, slower, and requires more memory
to utilize, but it may obtain more accuracy on occasion compared to One-
vs-All.

Image-based Evaluation Computer vision is, to put it simply, an attempt
to make a computer interpret vision in a similar way any other individual does
[11]. Thus far, most cases of computer vision involve extremely specialized forms,
such as optical character recognition (OCR) to interpret symbols from im-
ages. While more general-purpose methods do exist, they are not quite applicable
to the task at hand presently, though there is a good chance that it will be more
possible to use in the future.

For image-based evaluation, the main thing that is used is neural networks
- a network made of several layers of interconnected artificial neurons that take
in a value and return a result based on that value. The most common form of
these neural networks that are utilized are convolutional neural networks
[9]. Various sorts of variations and advancements have been made over the years,
but as a general case, these sorts of neural networks rely on three forms of neuron
layers:

1. Fully-connected layers are regularly used in all forms of artificial neural
networks. The main characteristic of these layers is that they are completely



Automatic programming problem difficulty evaluation – first results 5

connected to all adjacent layers, without being connected in any way to any
other layers.

2. Convolutional layers, which are capable of learning various kernels that
are then utilized to more efficiently evaluate a given image, are the primary
layers the convolutional neural network utilizes. In most standard neural
networks, reading an image would regularly result in a model that becomes
too large to train in any effective manner. By using a convolutional layer, it
is possible to reduce the complexity of a model significantly.

3. Pooling layers, which aim to pool together values in an attempt to gradu-
ally reduce the dimensions of the received image in such a way that it could
be reliably used without making the system too complex.

Model Combination Several different methods have been used to put together
multiple models in a way that would make the end result more capable than any
of the individual parts. Oftentimes, these models are mostly identical to the
others it is being combined with, excluding the data it was trained with. This
sort of model combination is referred to as ensemble learning. The most common
examples of this are [12]:

1. Bootstrap aggregating, sometimes referred to as bagging, is by far one
of the simplest methods of ensemble learning available. For this method, the
data is randomized during learning for each of the base learners. The results
are counted for each of the available results, then these results are taken and
averaged. The value that has achieved the highest average is considered to be
the correct result. One example of this is random forests - an ensemble model
that makes use of many different decision trees to form a result, regularly
more accurate than any of the individual decision trees. It is a particularly
quick to create model, but it is significantly less accurate compared to the
others.

2. Bayesian model averaging [4] is created in a fairly similar manner to
bootstrap aggregating - the data is randomized during learning, then an
overarching model puts together the result. The key difference, however, is
that each of the individual models in this exact scenario has a set weight
during the evaluation, influencing the end result in this way. The accuracy
is significantly better compared to Bootstrap aggregating due to this.

Aside from this, there is another method to utilize multiple different models,
however this one requires more specific methods - two-branch neural net-
works. [2] These networks utilize two different models - for example, one that
takes in text and another that takes in images, obtains the partial results, then
runs those results through another layer of neurons to get a final result. By
making use of this, both text and images are evaluated together.

3 Datasets

The dataset has been created personally through web scraping from several free
websites that can be utilized, such as hackerrank.com and codechef.com. The

http://hackerrank.com
http://codechef.com


6 A. Skarbalius, M. Lukoševičius

finalized dataset contains over 5000 different entries, each one containing diffi-
culty (provided by the author), accuracy (a percentage of how many individuals
successfully provided a suitable answer to the problem), the problem name, a
description, and a variable number of images. At present, the model attempts
to make use of the provided difficulty for the evaluation.

After this is finished, the data is recreated into multiple other methods to
ensure simplicity for the actual evaluation. A CSV file is created from the text
data (difficulty, problem name, description), and image data is combined with
the description to create a set of images that contain the necessary text for
evaluation.

4 Methods and Results

The methods we have utilized involve several different text classification methods
to obtain different results - perceptrons, linear support vector machines, etc. A
two-branch neural network is also used to improve the evaluation by adding deep-
learning-based image recognition. A specially-made program is used to obtain
results and return the possible accuracy.

4.1 Text-Based Evaluation

The results for text evaluation are fully detailed in Table 1. In this case, “Mi-
croAccuracy” refers to an accuracy calculation from all available results, while
“MacroAccuracy” takes the precision and recall in place of it instead.

The text preprocessing used for each of the models is as follows: Each of the
possible end result labels is assigned a numerical key, then all of the text from
the other two possible inputs is transformed into a vector of floats represent-
ing counts of n-grams (an identical continuous sequence of n items) for both
words and characters. Through doing this, it can then evaluate what each word
indicates for a problem’s difficulty.

For the sake of a more comprehensible explanation, the basic way accuracy
is calculated is

Pr =
TP

TP + FP
, (1)

where TP refers to the number of true positives, and FP refers to the number
of false positives.

Micro-average Accuracy, written here as MicroAccuracy, refers to adding all
of the values together before calculations. So, as an example, if there were three
classes to evaluate from, micro-average accuracy would be counted as

Prmicro =
TP1 + TP2 + TP3

TP1 + TP2 + TP3 + FP1 + FP2 + FP3
. (2)

Macro-average accuracy, written here as MacroAccuracy, refers to dividing
each of the results before averaging them, thus ensuring that each class has an



Automatic programming problem difficulty evaluation – first results 7

equal contribution to the result. Using the same example of three classes, this is
how macro-average accuracy is calculated as

Prmacro =
TP1

TP1+FP1 + TP2
TP2+FP2 + TP3

TP3+FP3

3
. (3)

Micro-average accuracy is preferable when trying to calculate accuracy for
a multi-class classification problem if it is believed that there may be some
imbalance between the number of entries per class. In this case, macro-average
accuracy is used to show that, while there is a small amount of imbalance in the
data, it does not truly impact the result with most models.

Table 1. Text evaluation results

Model name MicroAccuracy MacroAccuracy

Random Forest 0.718 0.725
Decision Tree 0.711 0.712
LightGBM 0.701 0.708
Logistic Regression (L-BFGS) 0.660 0.657
Maximum Entropy (SDCA) 0.639 0.661
Stochastic Gradient Descent 0.620 0.623
Averaged Perceptron 0.609 0.641
Linear Support-Vector Machine 0.583 0.597
SymbolicSgdLogisticRegression 0.545 0.584
Maximum Entropy (L-BFGS) 0.458 0.319

The algorithms mentioned use the same preprocessing methods, and no
method of separating parts of the exercise are utilized. Regardless, limited man-
ual testing shows that the results do not vary significantly if minor or irrelevant
parts are changed.

4.2 Image-Based Evaluation

For image-based evaluation, a single image containing the whole problem de-
scription together with the illustrations was rendered for each problem. The size
needed for the image is pre-calculated, the text and images are taken, then the
text is rendered using a predefined style, with images being inserted in places
where they were in the original problem. An example of the image formed from
the text and images of an exercise is shown in Figure 2.

Once that is finished, the result is used as data for a deep neural network, by
which the data is evaluated. Several well known models were used – their names
as well as the obtained results are shown in Table 2.

Similarly to the text models, preprocessing is the same for each model – in
this case, simply loading the image as raw bytes into the model. The rest is
handled by the neural network for each model.



8 A. Skarbalius, M. Lukoševičius

Fig. 2. Example of an image formed from a problem’s text and images. The problem
used is from codechef.com.

Table 2. Image evaluation results

Model name MicroAccuracy MacroAccuracy

ResNet50 0.403 0.343
ResNet101 0.436 0.385
MobileNet V2 0.297 0.239
Inception V3 0.339 0.258

4.3 Combining Text and Image-Based Evaluation

In an attempt to improve the accuracy of the text-based and image-based meth-
ods, a two-branch neural network was used. The two separate models are used
initially – one for text, the other for images. The outputs of the two models are

http://codechef.com


Automatic programming problem difficulty evaluation – first results 9

then concatenated and re-evaluated to obtain the refined result. The two-branch
neural network we are using is presented in Figure 3. For now, we use a single
layer neural network for the results refinement part.

Convolutional
Neural Network

Text evaluation

Concatenate Final results

Ada's classroom 

contains N⋅M tables 

distributed in a grid 

with N rows and M 

columns. Each table 

is occupied by exactly 

one...

Ada's classroom 

contains

N⋅M tables 

distributed in a 

grid with N rows 

and...

 

Fig. 3. Example of a two-branch neural network being used.

Before using the two-branch neural network, our image classification accuracy
was about 40-50 %. When a two-branch neural network is used, the accuracy goes
up rapidly, up to about 80+ % – significantly higher than either of the individual
models.

Table 3. Multiple variations for two-branch neural networks

Image model name Text model name MicroAccuracy MacroAccuracy

ResNet50 Random Forest 0.967 0.969
ResNet50 Logistic Regression (L-BFGS) 0.925 0.937
ResNet50 Averaged Perceptron 0.857 0.839
ResNet50 Stochastic Gradient Descent 0.804 0.793

5 Discussion and Future Work

At the time of writing, the things that have been attempted thus far are as
follows:

1. Text-based processing
2. Image-based processing
3. Two-branch neural networks

With this, a varied set of initial results has been obtained, giving an oppor-
tunity to evaluate some of the given results and potentially improve on them.

Among text-based models, with a bag of n-grams preprocessing, the Random
Forest ensemble model returned the best results.



10 A. Skarbalius, M. Lukoševičius

Future work for text-based models may include the use of different text pre-
processing methods – the completely different structure of the input may increase
the accuracy of the models further.

More options for the image recognition network could be tested in the future.
When fully trained, the models can most likely accurately determine the

difficulty of exercises correctly, so long as the data used for training is focused
on the type of exercise being evaluated by the model. It is unclear whether or
not these models can function for a wider variety of exercises simultaneously
without additional adjustments, as no testing has been done in regards to this.

The two-branch neural network is particularly useful at the moment. The
accuracy of the two-branch neural network is significantly greater (80 %) than
either the text-based (72 %) or image-based (43 %) models on their own.

More options for the combination of the two branches could be considered in
the future, including a single fully trainable architecture with no intermediate
interpretable results from the text and image-based models.

References

1. Bollapragada, R., Nocedal, J., Mudigere, D., Shi, H.J., Tang, P.T.P.: A progressive
batching L-BFGS method for machine learning. In: International Conference on
Machine Learning. pp. 620–629. PMLR (2018)

2. Chen, H., Lagadec, B., Bremond, F.: Partition and reunion: A two-branch neural
network for vehicle re-identification. In: CVPR Workshops. pp. 184–192 (2019)

3. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview
of ensemble methods for binary classifiers in multi-class problems: Experimental
study on one-vs-one and one-vs-all schemes. Pattern Recognition 44(8), 1761–1776
(2011)

4. Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T.: Bayesian model aver-
aging: a tutorial. Statistical science pp. 382–401 (1999)

5. Huang, Z., Liu, Q., Chen, E., Zhao, H., Gao, M., Wei, S., Su, Y., Hu, G.: Question
difficulty prediction for reading problems in standard tests. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 31 (2017)

6. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:
LightGBM: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems 30, 3146–3154 (2017)

7. Koutsojannis, C., Beligiannis, G., Hatzilygeroudis, I., Papavlasopoulos, C.,
Prentzas, J.: Using a hybrid AI approach for exercise difficulty level adaptation. In-
ternational Journal of Continuing Engineering Education and Life Long Learning
17(4-5), 256–272 (2007)

8. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to
decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics
Society 18(6), 275–285 (2004)

9. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458 (2015)

10. Palmer, D.D.: Text preprocessing. Handbook of natural language processing 2,
9–30 (2010)

11. Szeliski, R.: Computer vision: algorithms and applications. Springer Science &
Business Media (2010)

12. Zhou, Z.H.: Ensemble learning. Encyclopedia of biometrics 1, 270–273 (2009)


	Automatic programming problem difficulty evaluation – first results

