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Abstract

Age-related macular degeneration (AMD) is one of the leading causes of irreversible
vision impairment in people over the age of 60. This research focuses on semantic
segmentation for AMD lesion detection in RGB fundus images, a non-invasive and
cost-effective imaging technique. The results of the ADAM challenge – the most
comprehensive AMD detection from RGB fundus images research competition and
open dataset to date – serve as a benchmark for our evaluation. Taking the U-Net
connectivity as a base of our framework, we evaluate and compare several approaches
to improve the segmentation model’s architecture and training pipeline, including pre-
processing techniques, encoder (backbone) deep network types of varying complexity,
and specialized loss functions to mitigate class imbalances on image and pixel levels.
The main outcome of this research is the final configuration of the AMD detection
framework, which outperforms all the prior ADAM challenge submissions on the multi-
class segmentation of different AMD lesion types in non-invasive RGB fundus images.
The source code used to conduct the experiments presented in this paper is made
freely available.

Keywords: age-related macular degeneration; color fundus retinography; biomedical imaging;

lesion segmentation; U-Net; weighted binary cross-entropy.

1 Introduction

This research aims to investigate the application of machine learning methods to the field of
ophthalmology, particularly automatic methods to detect age-related macular degeneration.

Age-related macular degeneration (AMD) is a progressive eye disease that damages a
central portion of the retina responsible for sharp central vision [1]. It is a leading cause
of irreversible vision impairment in those over the age of 60 years in developed countries,
affecting 200 million people worldwide. Early detection is crucial, as a timely assessment of
the size and location of the lesion can guide effective treatment. However, diagnosis might
be highly complicated, since in the early and intermediate stages, AMD is asymptomatic.
In addition, easier-to-evaluate diagnostic methods, such as OCT or fluorescein angiography,
are invasive, expensive, and time-consuming.

Therefore, in this research, we evaluate the approaches to improve the performance of
the deep learning training/evaluation pipeline for AMD lesion detection in non-invasively
registered RGB fundus images, including the choice of segmentation architectures and loss
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functions, to achieve improvement over previous benchmarks. We provide the source code
for the research at https://github.com/vlntn-starodub/AMD-lesion-segmentation.

2 Related work

This section provides an overview of age-related macular degeneration and deep learning
techniques for image segmentation, with a focus on retinal images and AMD detection using
RGB fundus images.

2.1 Age-related macular degeneration

Age-related macular degeneration (AMD) is a progressive retinal disease that affects the
macula (see Fig. 1), the central part of the retina responsible for sharp vision, which is
critical for reading, driving, and facial recognition. Nearly 200 million people globally are
affected by AMD [2].

Figure 1: A healthy retina (left) and an AMD-affected retina with yellow drusen (right) [3]

Early and intermediate AMD are typically asymptomatic and detectable only by eye
examination. However, late AMD leads to vision loss and is the leading cause of irreversible
visual impairment. The chance of late AMD-related visual loss can be reduced by taking
certain actions when AMD is detected in earlier stages [4]; therefore, early diagnosis is
crucial.

The diagnosis of AMD often involves imaging techniques such as optical coherence
tomography (OCT), fundus autofluorescence (FAF), and contrast-enhanced RGB imaging.
However, these techniques require expensive equipment, have limited availability, or are
costly and invasive to the patient.

Non-contrast RGB fundus imaging (Color Fundus Retinography) is widely accessible
and non-invasive, using red, green, and blue channels to visualize macular structures. It
helps identify AMD markers such as drusen and pigment changes. However, interpretation
can be challenging, motivating the development of automated detection methods using RGB
images.

2.2 Detection of eye diseases using RGB fundus images

In the segmentation task using RGB fundus images, the techniques typically align with
general approaches in semantic segmentation. Reviews from 2020 to 2023 highlight several
key methods and architectures that are commonly used in biomedical image analysis, in-
cluding encoder-decoder architectures such as U-Net and fully convolutional networks, skip
connections, and dilated convolutions [5, 6, 7]. These models provide strong performance
for high-precision tasks such as lesion segmentation and are promising for the application
to the detection of AMD.
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Based on the analysis of related works and their proven effectiveness in biomedical image
segmentation [8, 9, 10], U-Net [11] is chosen as the main architecture used in this research.
It consists of an encoder-decoder structure with symmetric skip connections that enable
both precise localization and context awareness, which is beneficial for generating detailed
segmentation maps for AMD lesions in RGB fundus images.

Furthermore, EfficientNet [12] is used as the backbone in this research, initialized with
ImageNet pretrained weights [13], which allows the model to benefit from transfer learning
for improved generalization and faster convergence, important in cases with limited training
data, as in this study. EfficientNet introduces compound scaling, which enhances efficiency
and adaptability and reduces computational complexity through its use of depthwise sepa-
rable convolutions.

Using EfficientNet as the backbone, U-Net shows improved feature representation and
more efficient computation. For AMD segmentation in RGB fundus images, EfficientNet-
B0, B1, and B2 can be the most suitable to balance accuracy and efficiency.

2.3 Detection of age-related macular degeneration using RGB fun-
dus images

Most research on AMD segmentation and detection focuses on OCT or contrast-enhanced
RGB fundus images, which do not apply to this research. However, some studies align more
closely with our task. The study [14] introduces a deep learning–based approach using the
hybrid AMDNet23 model, combining CNN and LSTM with preprocessing techniques such
as gamma correction and CLAHE to enhance early detection and demonstrate the potential
of hybrid models in medical imaging. Another study, Automated age-related macular de-
generation area estimation—first results [15], focuses on AMD detection from RGB fundus
images using a dataset from the Lithuanian University of Health Sciences. It uses a cus-
tom classifier and four segmentation architectures, including U-Net, where segmentation
is performed only if AMD is detected. The system demonstrates high accuracy in both
classification and segmentation.

The most comprehensive AMD detection research using RGB fundus images is the
ADAM Challenge at ISBI 2020 [16], which aimed to improve algorithms for AMD diagnosis
and lesion segmentation. Among the four tasks of the challenge, “Detection and Segmen-
tation of Lesions” is most relevant to our research, involving the detection and pixel-wise
segmentation of drusen, exudate, hemorrhage, scars, and other lesions.

As a result of the challenge, several segmentation models for the detection of AMD from
retinal images were developed and evaluated. In particular, the most popular architectures
were U-Net, FPN, and DeepLab-v3. The U-Net models with EfficientNet or Residual blocks
as encoders showed the best performance in the lesion segmentation and detection part of
the task.

The dataset includes 1200 high-quality RGB fundus images split into equal training,
validation, and test sets of 400 images each, as well as pixel-wise segmentation masks of
five types of lesions (drusen, exudate, hemorrhage, scar, and others), shown in Fig. 2.
118, 123, and 99 images, available in training, validation, and test datasets, respectively,
have a segmentation mask for any out of the 5 lesions; some images have more than one
corresponding lesion. The datasets exhibit a significant class imbalance, as images without
lesions are presented in a much higher number (71% of the training dataset) than those
with segmentation masks. The sparseness leads to the model becoming biased toward the
majority class, predicting the absence of the lesions, and reducing the performance on lesion
detection.

Furthermore, the ADAM challenge provides a description of the evaluation setup for
detection models with the focus on tracking the Dice coefficient for segmentation and the
F1 score for classification. This aligns with the commonly used metrics, described in the
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Figure 2: Average of the masks over different types of lesions for ADAM dataset (the first five
from the left)

surveys on image segmentation, such as [6].
The Dice coefficient measures the overlap between the predicted and reference masks.

It is calculated on the pixel level and takes into account only the images that have regions
of interest in them. The F1 score is used for the evaluation of the classification task, which
assesses whether the region of interest is identified in an image, irrespective of precise
pixel-level segmentation. The F1 score is calculated for all images.

The evaluation of the model is based on a weighted combination of the Dice coefficient
and the F1 score.

R = 0.4 · F1 + 0.6 ·Dice (1)

This weighting prioritizes segmentation performance, as it often has greater clinical
significance with information about the size and shape of the lesion, which are critical for
diagnosis and treatment planning.

The ADAM challenge dataset is used as the main input for this research. Therefore,
the results obtained from the ADAM challenge are also used as a baseline for comparing
the results of this research.

3 Methods

The research addresses semantic segmentation and detection of AMD lesions in RGB fundus
images using a segmentation-based classification approach, with a focus on optimizing the
training pipeline.

3.1 Semantic segmentation and detection

Since diagnosing AMD requires identifying not only the presence of lesions but also their size
and location, this research explores the detection of lesions in RGB fundus images using bi-
nary classification and segmentation, both of which are essential for clinical decision-making.
Providing both classification labels and segmentation masks makes the system more flexible
to real-life demands: while classification indicates disease presence, segmentation provides
spatial details for monitoring and treatment planning.

In this research, segmentation-based classification is used. A segmentation model is
trained on both AMD and non-AMD images. During inference, the model generates binary
masks for all images. Classification is derived from the predicted mask: if any lesion pixel
is detected, the image is classified as AMD. The final output includes a segmentation mask
and a scalar label indicating the presence of AMD, based on the predicted mask.

This approach improves detection accuracy with detailed analysis from the segmentation
model for the classification decision, potentially reducing false negatives. It also provides a
simpler pipeline with a single model for both tasks.
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3.2 Data preprocessing and loading pipeline

As mentioned in the description of the dataset in Section 2.3, in this research, some input
images do not contain ROI, only background pixels, while others contain ROI and therefore
have a corresponding ground-truth mask of the object of interest.

The multiclass binary segmentation task is considered: for each image, the pipeline
constructs a multi-channel mask, where each channel represents a specific lesion type. Pre-
dictions are made for each lesion type separately. Missing masks for any lesion type are
handled by filling the corresponding channel with zeros, indicating the absence of lesions of
that type. The final multi-channel mask contains segmentation masks for all lesion types
for a given image, illustrated in Fig. 3.

Figure 3: Input image and multi-channel ground truth mask

Masks are loaded as grayscale images, binarized by converting pixel values of 255 to 1,
and inverted to follow the convention of representing foreground as 1 and background as 0.
Original and processed masks are shown in Fig. 4.

Figure 4: Original and modified in data loading input image and ground truth mask

All images and their corresponding masks are resized. The optimal resolution was
determined by evaluating the performance of the model across multiple input sizes (640×
640, 320×320, and 160×160). Although lesion type and metric have an impact on the choice
of optimal image size, it was decided to use 320 × 320 size: this set-up demonstrated the
highest Rank (Eq. 1) compared to all other configurations for the majority of lesion types.
Moreover, with limited computational resources, it still allowed for a large batch size in
training, which had a major impact on performance improvement. Therefore, a resolution
of 320 × 320 was selected to balance the accuracy of the model with the computational
efficiency during training and evaluation.

To enhance generalization, we applied on-the-fly data augmentation. Techniques in-
cluded small rotations, cropping, scaling, and brightness/contrast adjustments to simu-
late variations in orientation, positioning, and lighting. Parameters were selected through
tuning, and identical transformations were applied to both images and masks to ensure
consistency.

The final sample of the dataset for each input image consists of the processed image
tensor and the multi-channel mask tensor.
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3.3 Model architecture and initialization

In this work, a modified U-Net model architecture from Segmentation Models Pytorch [17]
with an EfficientNet-based encoder (timm implementation of the PyTorch image models
library [18]) is used. Both the impact of encoder depth and the necessity of using an encoder
were evaluated. The encoder is pre-trained on the ImageNet dataset [13].

The model accepts three-channel (RGB) images and five-channel (one for each lesion)
ground-truth masks and outputs a single-channel binary mask to indicate the lesion.

For each lesion type, a separate model is trained, optimized, validated, and tested,
although the architecture and initial training and evaluation setup remain the same for all
lesions.

3.4 Loss functions for semantic segmentation

As mentioned in Section 2.3, the dataset shows a severe class imbalance between the fore-
ground and background, due to both the limited number of ROI-containing images and
the sparse foreground regions. Standard cross-entropy loss fails to adequately handle such
an imbalance. To address this, we compare specialized loss functions – such as weighted
binary cross-entropy, Dice, Focal, and Tversky loss – that focus on foreground prediction
by applying penalty strategies.

The weighted binary cross-entropy assigns class-specific weights to address this issue
[19]. For sparse targets, where the foreground is underrepresented, the positive class weight
is increased to improve foreground classification, making it beneficial for handling class
imbalance in segmentation tasks.

The weights can be calculated as the proportion between the number of foreground and
background pixels. The positive weight for each lesion type i is computed as:

pos weights[i] =

{
num neg[i]
num pos[i] , if num pos[i] > 0,

0, if num pos[i] = 0,
(2)

num pos[i] =

B∑
b=1

∑
x,y

1{mb,i(x, y) = 1}

num neg[i] =

B∑
b=1

∑
x,y

1{mb,i(x, y) = 0},

where T is the number of lesion types, B is the batch size, and mb,i(x, y) represents the
mask value for lesion type i at pixel location (x, y) in image b.

Focal loss extends weighted cross-entropy loss with the addition of focusing parameters,
which dynamically influence the impact of predicted probability [19]. It downweights easy
examples and reduces the relative loss for well-classified examples, allowing the model to
concentrate on difficult cases.

The focusing parameter must be tuned. The values of the weighted parameters can be
computed by normalizing the positive weights of the weighted BCE pos weights[i] (Equa-
tion 2). For each lesion type i, the alpha is given by:

α[i] =
pos weights[i]∑T
j=1 pos weights[j]

, (3)

where pos weights[i] is the positive weight for lesion type i; T is the total number of lesion
types.

Focal loss is effective when a significant proportion of the images are part of the back-
ground. However, its dynamic reweighting might struggle in cases of severe imbalance with
sparse, irregular positive classes.
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Dice loss, derived from the Dice coefficient, optimizes the overlap between the predicted
and target regions and is widely used in segmentation [19]. However, it can be unstable
with sparse foregrounds (as seen in Fig. 5) due to its sensitivity to small prediction errors.

Tversky loss, a generalization of Dice, introduces adjustable parameters to better han-
dle class imbalance by weighting false positives and false negatives [19]. Although more
flexible, it still relies on overlap and may struggle with irregular foregrounds. Another dis-
advantage is the need to tune the parameters rather than having them determined through
calculations.

3.5 Training and evaluation pipeline

Amodel for each lesion type is trained independently over 100 epochs. To reduce overfitting,
the best-performing model (based on validation Rank, Eq. 1) is saved whenever performance
improves. This allows recovery and testing of the best model without retraining.

For inference, inputs are preprocessed consistently with training, and the model outputs
are post-processed (thresholding) to generate segmentation masks and classification labels.
The validation metrics – the Dice coefficient for segmentation, the F1 score for the detection
of the presence of lesions, and the Rank (1) – are computed separately for each lesion type.

Evaluation combines quantitative metrics (F1, Dice scores) and qualitative visual in-
spection, ensuring that masks accurately highlight target regions (as shown in Fig. 5).

Figure 5: Input image, ground truth mask, output of segmentation model and its binarization
(threshold = 0.5)

Framework configurations were selected based on validation set performance. The test
set was reserved for evaluating the final model and comparing it with those of the ADAM
challenge.

4 Results

Several approaches to improve segmentation performance were evaluated, including vari-
ations in encoder complexity, attention mechanisms, loss functions, and dropout rates.
However, only the choice of encoder and loss function significantly impacted training out-
comes and are therefore discussed in detail. The main outcome is the final configuration of
the AMD detection framework and its comparison with the ADAM challenge results.

4.1 Evaluation of the encoder choice impact

The U-Net was chosen due to its common use in medical segmentation, highlighted in the
literature review. Initially, a traditional U-Net implementation was used. However, due to
the simplicity of the manually created architecture, this approach was insufficient: for all
lesion types, the Dice score on the validation dataset was near 0.
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Therefore, we switch to a more optimized U-Net architecture from the Segmentation
Models Pytorch (SMP) library [17], which supports pre-trained encoders for improved fea-
ture extraction and faster convergence. EfficientNetB0 and EfficientNetB2 encoders were
evaluated, suited for low- and medium-complexity tasks, respectively. Additionally, the
timm library version of the encoders was tested, offering better pretrained weights due to
enhanced optimizers, augmentations, and regularization during pretraining.

For a comprehensive comparison across all lesion types, average and weighted average
metrics were used, the latter weighted by the number of images per lesion type in the
validation set.

The results of the encoder comparison are provided in Table 1.

Table 1: Metrics for different EfficientNet encoders

Lesion Metric B0 B0 (timm) B2 (timm)

Drusen
Dice 0.4872 0.4853 0.5017
F1 0.8050 0.8050 0.8275
Rank 0.6143 0.6132 0.6320

Exudate
Dice 0.5970 0.6082 0.5628
F1 0.6850 0.7675 0.7875
Rank 0.6322 0.6719 0.6527

Hemorrhage
Dice 0.2554 0.3457 0.3419
F1 0.9575 0.9575 0.9400
Rank 0.5362 0.5904 0.5811

Other
Dice 0.2992 0.3018 0.3355
F1 0.8925 0.6800 0.9825
Rank 0.5365 0.4531 0.5943

Scar
Dice 0.4821 0.6650 0.5313
F1 0.9475 0.8125 0.9725
Rank 0.6683 0.7240 0.7077

Average
Dice 0.4242 0.4812 0.4546
F1 0.8575 0.8045 0.9020
Rank 0.5975 0.6105 0.6336

Weighted
average

Dice 0.4484 0.4705 0.4651
F1 0.8124 0.8006 0.8629
Rank 0.5940 0.6025 0.6242

The evaluation results show that using the timm library significantly improves the per-
formance of the model: the timm-based EfficientNetB0 consistently outperforms the stan-
dard version in the Dice and Rank metrics for exudate, hemorrhage, and scar lesions, and
achieves a higher F1 score for exudates. It also shows better average and weighted aver-
age Dice and Rank scores for all lesion types. This highlights the importance of advanced
pretraining strategies of encoders for accurate lesion segmentation.

When comparing the usage of architectural complexities, EfficientNetB2 outperforms
EfficientNetB0 in classification, achieving higher F1 scores for all lesions except hemor-
rhage. However, in segmentation, it performs better only for drusen and “other” lesions,
indicating that although EfficientNetB2 is effective at detecting lesions, it struggles with
precise boundary segmentation.

Despite these segmentation limitations, EfficientNetB2 maintains strong overall perfor-
mance: both average Rank scores are the highest among all encoders, and it achieves the
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second-best Dice score, showing strong combined performance in both classification and
segmentation tasks.

4.2 Evaluation of the loss function impact

Four loss functions commonly used in semantic segmentation tasks with class imbalance
were analyzed: weighted binary cross-entropy loss (the weights for the positive class (fore-
ground pixels) calculated based on the proportion of foreground and background pixels),
Dice loss, Tversky loss, and Focal loss.

For Tversky and Focal loss, tuning is the primary way to find the optimal parameters.
Tversky loss was tested with a parameter α of 0.1, 0.2, 0.3, 0.4, β = 1−α – corresponding

to penalizing false negatives more to help detect foreground effectively.
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Figure 6: Results of parameter tuning for Tversky loss; α equal to 0.1, 0.2, 0.3, 0.4, β = 1− α

Focal loss was tested with the parameter α calculated based on the proportion of fore-
and background pixels (3), and γ equal to 1 (no focus on underrepresented foreground), 2
(moderate focus on hard-to-classify pixels) or 3 (strong focus on misclassified regions, useful
for small foreground objects).
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Figure 7: Results of parameter tuning for Focal loss; α calculated based on the proportion of
fore- and background pixels (3), γ is equal to 1, 2 or 3

As shown in Figs. 6 and 7, performance is different between the lesion types depending
on the parameter values, indicating that some lesions may need more aggressive weight
balancing to address the class imbalance. The optimal parameters for each lesion type are
listed in Table 2.

Fig. 8 illustrates the results obtained using different loss functions.
Weighted binary cross-entropy and Tversky loss functions demonstrate the most consis-

tent performance across both Dice and F1 scores. Although not always achieving the best
performance in these metrics, their primary strength lies in balanced optimization of both
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Table 2: Optimal parameters for Tversky and Focal loss

Loss Drusen Exudate Haemorrhage Other Scar

Tversky (α) 0.4 0.4 0.3 0.4 0.2
Focal (γ) 2 3 1 3 1

Loss Function
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Figure 8: Comparison of the results obtained after training with the usage of different loss
functions

segmentation and detection, shown in the highest Rank scores across all lesion types. This
trade-off suggests that they avoid extensive focus on either image- or pixel-level accuracy.

The consistency of weighted binary cross-entropy loss stems from its simple handling
of class imbalance by directly applying class-level weighting instead of compensating for
skewed distributions by emphasizing harder-to-classify cases (as in Focal loss) or maximizing
mask overlap (as in Dice loss).

The high performance of Tversky loss, a generalization of Dice loss, is better understood
by examining the training with Dice loss.

Dice loss appears to provide mixed results: it performs well in segmentation but has
the lowest F1 scores for classification. However, the segmentation scores with Dice loss are
misleading, as they are calculated only on samples with lesions. As illustrated in Fig. 9,
Dice loss leads to oversegmentation: for images without the lesions, the model still returns
a non-zero segmentation mask, which increases false positives and negatively impacts the
classification. Dice loss fails to include images without lesions, making it less suitable for
joint segmentation-classification tasks, but effective when all images contain lesions.

This leads to the use of Tversky loss: by introducing a penalty for false positives,
while still keeping a higher penalty for false negatives to overcome foreground under-
representation, we can overcome the shortcomings of Dice loss.

Focal loss showed the highest F1 score, while underperforming in pixel-wise segmenta-
tion, reflected in the lowest Dice coefficients. This can be explained by the more significant
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Figure 9: Images, ground-truth and segmentation masks obtained from the model trained using
Dice loss

class imbalance on the pixel-wise level compared to the image-wise one. Therefore, Focal
loss overcomes image-level imbalance by focusing on harder-to-classify instances. However,
this strategy is not sufficient in the more complex case of an imbalance in segmentation.

From the comparison of the results, weighted BCE and Tversky loss showed the most
consistent performance across all metrics and lesions, with the highest Rank values. The
weighted BCE was selected for the final setup. It demonstrated well-balanced performance
in both segmentation and classification, while not requiring parameter tuning.

4.3 Final configuration

This section presents the final configuration based on commonly used techniques from the
literature review and the analysis of the results from previous sections. This configuration
addresses the challenges identified earlier and achieves the highest results for the automated
AMD area estimation task.

Main parameters of the configuration:

• input image and masks dimensions: 320×320; 5-channel binarized masks, each channel
corresponding to one lesion type (mask consists of pixels with value 0 if a lesion is
not available);

• batch size: 32;

• model: U-Net with an EfficientNet-based encoder (timm PyTorch image models li-
brary implementation), pre-trained on the ImageNet dataset; dropout rate 0; includes
batch normalization;

• optimizer: Adam optimizer;

• learning rate: 0.001; learning rate scheduler: ReduceLROnPlateau (factor of 0.1 when
validation loss stagnates for 25 epochs);

• loss function: weighted Binary Cross-Entropy loss function; weights (2) are assigned
to a positive class for each lesion type (Table 3);
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• number of epochs: 100 (best model is saved during the training if the validation Rank
has improved).

Table 3: Weights assigned to positive class in weighted Binary Cross-Entropy loss function

Lesion type Drusen Exudate Haemorrhage Other Scar

Weight 135 175 386 170 550

Table 4 shows the results and their comparison to the ADAM challenge. “Best” and
“2nd best” list the two highest reported values per metric and lesion, while “Best team”
shows the top team’s results based on the final ranking in the lesion segmentation task.
The Rank metric, not provided in [16], is calculated separately using 1.

The best values for the Dice coefficient, the F1 score, and the Rank for each lesion are
marked in bold.

Table 4: Performance metrics of our final configuration, and their comparison to results of
the ADAM challenge

Lesion Metric Our result
ADAM challenge results

Best 2nd best Best team

Drusen
Dice 0.5102 0.5549 0.4838 0.4838
F1 0.7800 0.6316 0.5674 0.6316
Rank 0.6181 0.5856 0.5172 0.5429

Exudate
Dice 0.5846 0.4337 0.4154 0.4154
F1 0.6900 0.5688 0.5581 0.5688
Rank 0.6268 0.4877 0.4725 0.4768

Haemorrhage
Dice 0.3860 0.4303 0.2400 0.4303
F1 0.9100 0.8293 0.7307 0.7307
Rank 0.5956 0.5899 0.4363 0.5505

Other
Dice 0.3349 0.6906 0.2852 0.2852
F1 0.7450 0.4724 0.1818 0.0714
Rank 0.4989 0.6033 0.2438 0.1997

Scar
Dice 0.6747 0.5807 0.5639 0.4051
F1 0.8950 0.8511 0.7273 0.7027
Rank 0.7628 0.6889 0.6293 0.5241

Average
Dice 0.4981 0.5380 0.3977 0.4040
F1 0.8040 0.6706 0.5531 0.5410
Rank 0.6204 0.5911 0.4598 0.4588

Weighted
average

Dice 0.4846 0.5185 0.3886 0.4200
F1 0.7721 0.6253 0.5334 0.5402
Rank 0.5996 0.5613 0.4465 0.4681

Drusen and hemorrhage: Although the Dice score of our approach is slightly lower
than the highest values achieved in the ADAM challenge (still outperforms the second-best
Dice coefficient), the proposed method has a significantly higher F1 score. This suggests
that while the prediction of the outline or location of the lesions might still be challenging,
the model shows improvement in detecting the presence of the lesions. This also positively
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impacted the overall performance – the Rank score is the highest among all the compared
results. In addition, for drusen, the proposed model exceeds the result of the highest-ranked
team for this lesion for all metrics; for hemorrhage, Dice is the only value lower than the
one obtained by the highest-ranked team of the ADAM challenge.

Exudate and scar: The proposed method consistently outperforms all ADAM base-
lines across all metrics. Its Dice and F1 scores and, as a result, Rank are significantly higher,
indicating that the model provides improved results in both segmenting and detecting the
presence of this lesion type.

“Other”: In the category “other”, the proposed method provides exceptional results
in terms of the F1 score, showing its ability to detect lesions. However, its Dice score lags
behind the best ADAM model, suggesting the issues with the precision of predicting the
outlines of the lesions; this negatively impacts the Rank metric. Despite this, the method
performs better than the second-best model. Compared to the highest-ranking team, it
shows a significant improvement, particularly in the F1 score, which rose from 0.07 to 0.98,
showing its ability to maintain high performance on sparse data, where the top ADAM
team struggled.

Average and weighted average: The results are similar to those observed with in-
dividual lesions: the proposed method surpasses all ADAM setups in the detection while
providing only the second-best results in segmentation. However, when considering the
combined performance across both tasks – the Rank metric – the framework showed im-
provement compared to all the results of the ADAM challenge.

Overall, the suggested setup is beneficial for detecting the presence of lesions, but the
pixel-wise segmentation results, although competitive, can still be improved.

Another notable observation is that the proposed framework does not perform well only
on a subset of lesion types while compromising performance on others, as was the case with
some models of the ADAM challenge. For instance, the highest-ranked team model achieved
strong results for certain lesion types (drusen or hemorrhage), but performed poorly on the
“other” lesions. In contrast, the proposed framework maintains balanced, high performance
across all lesion types.

In summary, the proposed method consistently outperforms the best or second-best
results in the ADAM challenge for all types of lesions. The model achieves particularly
strong results for exudate and scar lesion types, while maintaining competitive results for
the other lesion types. Compared to the highest-ranked team in the lesion segmentation
task, the proposed setup shows improved performance for all lesion types and metrics,
except for the Dice score on hemorrhage lesions. These results suggest that the proposed
method offers a promising alternative for lesion detection tasks.

5 Discussion

This study explored multiple strategies to enhance segmentation performance for AMD le-
sion detection in non-invasive RGB fundus images. Performance improvement was achieved
through appropriate selection of the encoder – particularly considering its pre-training strat-
egy and complexity – as well as the use of loss functions capable of mitigating class imbalance
at both the pixel and image levels, since the key challenges of the segmentation task were
the imbalance between foreground and background pixels and the difficulty in segmenting
rare lesion types.

The use of pre-trained encoders clearly improved segmentation and classification met-
rics across most lesion types. Moreover, the usage of the advanced pre-training strategies
significantly enhanced model performance. It was also shown that deeper architectures
(such as EfficientNetB2 compared to EfficientNetB0), while better in classification, showed
mixed segmentation results, suggesting deeper encoders may be more effective in detect-
ing lesion presence than capturing precise boundaries. Still, EfficientNetB2 achieved the
highest overall performance and was included in the final configuration.
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As for the choice of the loss function, out of four evaluated ones, weighted Binary Cross-
Entropy (BCE) and Tversky showed the most consistent results across the metrics for all
lesions, resulting in the best overall performance. Other functions – Dice and Focal loss –
were able to demonstrate high results only in the segmentation or classification part of the
task, respectively, neglecting, however, the other part. Focal loss achieved strong classifi-
cation but weak segmentation, indicating its limitations in handling pixel-level imbalance.
Dice loss, though effective in segmentation, led to a high amount of false positive predictions
for the images without lesions, impairing classification performance. This prompted the us-
age of Tversky loss, which successfully addressed this issue by penalizing false positives
more. Weighted BCE was ultimately chosen for its consistent performance and simplicity,
requiring no parameter tuning.

The final configuration of the AMD lesion detection framework included a U-Net model
with an ImageNet-pretrained EfficientNetB2 encoder, a weighted binary cross-entropy loss
function with weights tuned to reflect the class imbalance of the dataset. The proposed
method consistently outperforms previous submissions to the ADAM challenge on the
multi-class segmentation of various AMD lesion types in non-invasive RGB fundus im-
ages, achieving state-of-the-art performance. Future work can focus on further improving
lesion localisation and the precision of the lesion boundaries.

6 Conclusions

This research investigated the application of semantic segmentation models for the auto-
mated age-related macular degeneration area estimation in non-invasively registered RGB
fundus images, focusing on improving the accuracy of the semantic segmentation task and
addressing associated challenges, such as class imbalance and sparse data.

The final configuration of the proposed AMD lesion detection framework, consisting
of a U-Net model with an EfficientNet encoder pre-trained on ImageNet and a weighted
binary cross-entropy loss function, achieved state-of-the-art performance in the semantic
segmentation of AMD lesions. Comparative analysis against the best-performing methods
from the ADAM challenge confirmed improved segmentation and detection accuracy.

The improvements over prior benchmarks demonstrate the applicability of the developed
framework to automated, non-invasive diagnosis of AMD, and the insights provided in this
research pertain to the broader medical image analysis field.

The source code for the research is provided at https://github.com/vlntn-starodub/
AMD-lesion-segmentation.
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