ECML PKDD 2024

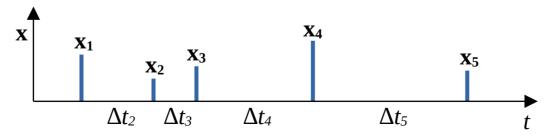
Machine Learning for Irregular Time Series ML4ITS2024

Task-Synchronized Recurrent Neural Networks Mantas Lukoševičius & Arnas Uselis

Vilnius, 2024.09.13

Irregular Time Series

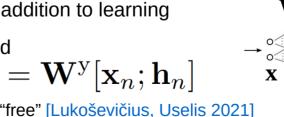
- Data gathered at irregular intervals
 - Patient examination, test, expedition, etc.
- Data sources that get dated
 - Geological, archaeological sample, historic document, etc.
- Data points when certain events happen
 - Action by a user, accident, natural phenomenon, economic transaction, neural spike, etc.

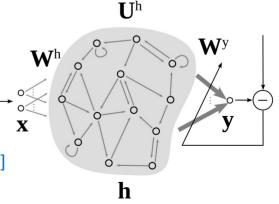


ECML PKDD 2024

Recurrent Neural Networks (RNNs)

- Recurrences in connections
 - Dynamical systems (universal approximators, Turing complete)
 - Naturally suited for time series
 - Has internal state / memory, no fixed time window
- "Vanilla" (vs. GRU, LSTM) $\mathbf{h}_n = (1 \alpha)\mathbf{h}_{n-1} + \alpha\sigma\left(\mathbf{W}^{\mathrm{h}}\mathbf{x}_n + \mathbf{U}^{\mathrm{h}}\mathbf{h}_{n-1}\right)$
- Reservoir computing: Echo State Network [Jaeger 2001], (vs. fully trained)
 - Investigate different aspects of RNNs in addition to learning
 - Typically only the linear readout is trained
 - Very fast one-shot training $\mathbf{y}_n = \mathbf{W}^{\mathrm{y}}[\mathbf{x}_n;\mathbf{h}_n]$
 - Cross-validation can be done almost for "free" [Lukoševičius, Uselis 2021]





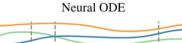
ECML PKDD 2024

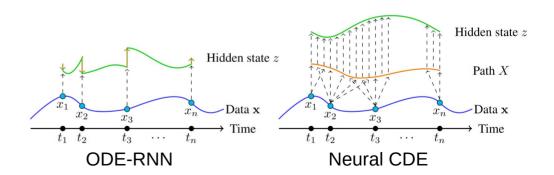
Dealing with Irregular Time with RNNs

- Ignore it's irregular
- Resample/interpolate the data
- Feed Δt_n as additional (special?) input
- Have specialized data pre-treatment layers
- "Resample" the RNN to match the time of the data

RNN Methods Employing Differential Equation (DE) Solvers

- ODE-RNN [Rubanova et al 2019],
 - Based on Neural ODEs [Chen et al 2018]
 - Simple RNN updates with input
 - ODE evolution in between
 - The two don't mix well
- Neural CDE (Controlled DE) [Kidger et al 2020]
 - Inputs continually affect the RNN state
 - They have to be interpolated
 - Defeats the purpose of having irregular time?
- Both are computationally expensive





ECML PKDD 2024

Task-Synchronized Echo State Networks

 $\dot{\mathbf{h}} \approx \frac{\mathbf{h}_n - \mathbf{h}_{n-1}}{\mathbf{h}_n}$

- Continuous-time RNN $\dot{\mathbf{h}} = \alpha \cdot \left(-\mathbf{h} + \sigma (\mathbf{W}^{h}\mathbf{x} + \mathbf{U}^{h}\mathbf{h})\right)$
- Euler discretization
- Discrete-time RNN

$$\mathbf{h}_{n} = (1 - \alpha \Delta t) \mathbf{h}_{n-1} + \alpha \Delta t \sigma \left(\mathbf{W}^{\mathrm{h}} \mathbf{x}_{n} + \mathbf{U}^{\mathrm{h}} \mathbf{h}_{n-1} \right)$$

 RNN (ESN) with leaky integration, e.g. [Lukoševičius 2012]

$$\mathbf{h}_{n} = (1 - \alpha)\mathbf{h}_{n-1} + \alpha\sigma\left(\mathbf{W}^{\mathrm{h}}\mathbf{x}_{n} + \mathbf{U}^{\mathrm{h}}\mathbf{h}_{n-1}\right)$$

• Task-Synchonized ESN

$$\mathbf{h}_{n} = (1 - \alpha \Delta t_{n})\mathbf{h}_{n-1} + \alpha \Delta t_{n}\sigma \left(\mathbf{W}^{\mathrm{h}}\mathbf{x}_{n} + \mathbf{U}^{\mathrm{h}}\mathbf{h}_{n-1}\right)$$

• Readout $\mathbf{y}_n = \mathbf{W}^{\mathrm{y}}[\mathbf{x}_n; \mathbf{h}_n]$

ECML PKDD 2024

Task-Synchronized Gated Recurrent Units

- GRUs [Cho et al 2014]
 - Update and reset (forget) gates

$$\mathbf{z}_n = \sigma_g (\mathbf{W}^z \mathbf{x}_n + \mathbf{U}^z \mathbf{h}_{n-1}),$$

 $\mathbf{r}_n = \sigma_g (\mathbf{W}^r \mathbf{x}_n + \mathbf{U}^r \mathbf{h}_{n-1}),$

$$\mathbf{h}_{n} = (1 - \mathbf{z}_{n}) \circ \mathbf{h}_{n-1} + \mathbf{z}_{n} \circ \sigma \left(\mathbf{W}^{\mathrm{h}} \mathbf{x}_{n} + \mathbf{U}^{\mathrm{h}} (\mathbf{r}_{n} \circ \mathbf{h}_{n-1}) \right)$$

- State update
- (Update gate ~ like learned unit-wise leaking rate)
- Continuous-time version

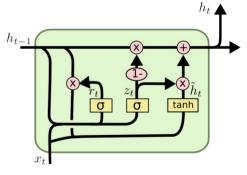
$$\dot{\mathbf{h}} = \mathbf{z} \circ \left(-\mathbf{h} + \sigma (\mathbf{W}^{\mathrm{h}} \mathbf{x} + \mathbf{U}^{\mathrm{h}} (\mathbf{r} \circ \mathbf{h})) \right)$$

Task-Synchonized GRU

 $\mathbf{h}_{n} = (1 - \Delta t_{n} \mathbf{z}_{n}) \circ \mathbf{h}_{n-1} + (\Delta t_{n} \mathbf{z}_{n}) \circ \sigma \left(\mathbf{W}^{\mathrm{h}} \mathbf{x}_{n} + \mathbf{U}^{\mathrm{h}} (\mathbf{r}_{n} \circ \mathbf{h}_{n-1}) \right)$

• Readout $\mathbf{y}_t = \mathbf{W}^{\mathrm{y}}[1; \mathbf{h}_t]$

ECML PKDD 2024



Nonlinear Time Scaling

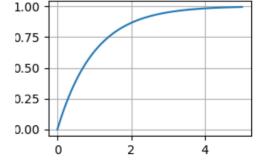
$$\mathbf{h}_{n} = (1 - \alpha \Delta t_{n})\mathbf{h}_{n-1} + \alpha \Delta t_{n}\sigma \left(\mathbf{W}^{\mathrm{h}}\mathbf{x}_{n} + \mathbf{U}^{\mathrm{h}}\mathbf{h}_{n-1}\right)$$

• $(1 - \alpha \Delta t_n)$ should not be negative:

 $\Delta t_n \leq 1/\alpha$

- We can scale Δt_n , but outliers...
- One solution: introduce a version where we replace Δt_n with: ("exp" versions)

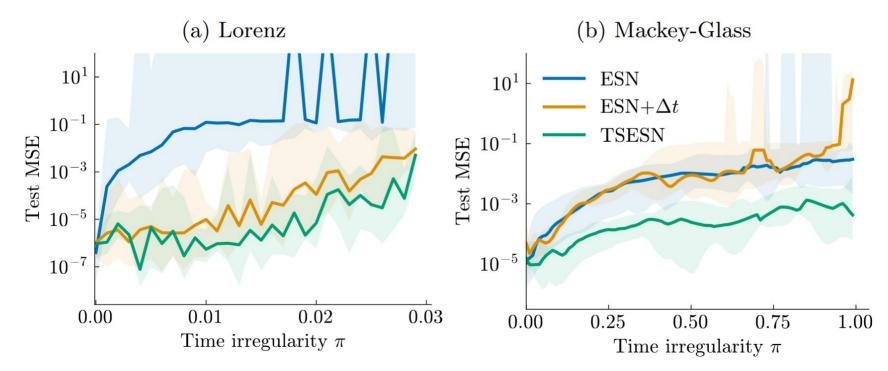
$$f(\Delta t_n) = 1 - e^{-\Delta t_n}$$



ECML PKDD 2024

Synthetic Chaotic Attractor Datasets

With artificially introduced and controlled levels of (high) time irregularity

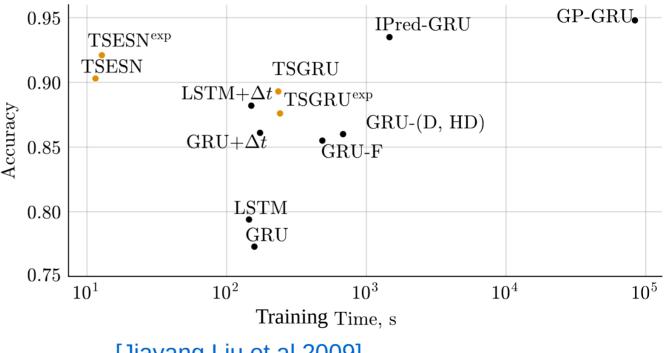


ECML PKDD 2024

UWave Gesture Dataset

Gestures generated from accelerometers

- 8 class classification
- Univariate
- 3582 train and 896 test instances
 - 30% of train is used for validation
 - Each instance is 945 time samples
- 10% of samples is randomly taken to have sparse irregular time series



[Jiayang Liu et al 2009] https://timeseriesclassification.com Following [Shukla, Marlin 2019]

ECML PKDD 2024

Speleothem Dataset

Summer monsoon rainfall (readings of oxygen isotopes) over the last two millennia in a speleothem in a cave in India

- Prediction
- Univariate
- 1800 samples
 - 1700 for training,
 - 50 for validation,
 - the last 50 for testing
- Very non-stationary (2000 years...)

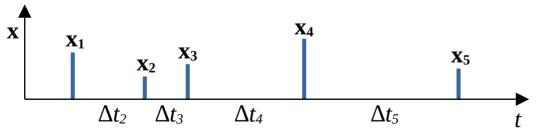
Model	Valid. RMSE	Test RMSE	Test MAPE	$f(\Delta t_n)$	Valid. type
ESN	0.117 ± 0.009	0.425 ± 0.064	4.311 ± 0.702	linear	standard
$\mathrm{ESN}{+}arDelta t$	0.161 ± 0.036	0.348 ± 0.044	3.377 ± 0.456	linear	standard
Interp. ESN	0.139 ± 0.022	0.346 ± 0.093	3.397 ± 0.998	linear	standard
TSESN	0.129 ± 0.008	0.408 ± 0.026	4.125 ± 0.296	\exp	standard
TSESN	0.120 ± 0.011	0.490 ± 0.021	4.952 ± 0.237	linear	standard
GRU	0.169 ± 0.010	0.351 ± 0.028	3.401 ± 0.304	linear	standard
LSTM	0.160 ± 0.001	0.405 ± 0.009	3.999 ± 0.103	linear	standard
${ m GRU}{+}{\it \Delta t}$	0.164 ± 0.003	0.366 ± 0.017	3.559 ± 0.192	linear	standard
${ m LSTM}{+}{\it \Delta t}$	0.162 ± 0.001	0.403 ± 0.023	3.981 ± 0.267	linear	standard
Interp. GRU	0.171 ± 0.010	0.334 ± 0.022	3.206 ± 0.236	linear	standard
Interp. LSTM	0.157 ± 0.002	0.383 ± 0.010	3.738 ± 0.118	linear	standard
TSGRU	0.187 ± 0.021	0.349 ± 0.053	3.389 ± 0.577	linear	$\operatorname{standard}$
ESN	0.193 ± 0.005	0.185 ± 0.006	1.709 ± 0.057	\exp	$\overline{\mathrm{CV}}$
$\mathrm{ESN}{+}\Delta t$	0.201 ± 0.005	0.244 ± 0.001	2.340 ± 0.010	\exp	CV
Interp. ESN	0.183 ± 0.004	0.304 ± 0.005	2.917 ± 0.051	\exp	CV
TSESN	0.199 ± 0.008	0.159 ± 0.002	1.478 ± 0.017	\exp	CV
TSESN	0.182 ± 0.004	$\overline{0.346 \pm 0.014}$	$\overline{3.333\pm0.150}$	linear	CV

[Sinha et al 2015]

ECML PKDD 2024

Summary

- Advantages
 - Very fast and natural: "built-in"
 - No additional learning
 - No inventing of data
 - Effective
 - Should be default?



- Limitations
 - No asynchronous data
 - Huge time gaps are problematic
 - Exp Δt_n
 - Impute?

ECML PKDD 2024

Future work

- More models
 - Fully-trained TSRNN
 - TSLSTM?
 - In combination with other techniques
- More applications
 - Multivariate
- More comparisons to other models

Questions?

https://arxiv.org/ abs/2204.05192

https://github.com/oshapio/ task-synchronized-RNNs

https://mantas.info/