
Task-Synchronized Recurrent Neural Networks

Mantas Lukoševičius[0000−0001−7963−285X] and Arnas Uselis

Kaunas University of Technology, LT-44249 Kaunas, Lithuania
mantas.lukosevicius@ktu.lt and auselis@gmx.com

Abstract. Data are often sampled irregularly in time. Dealing with
this using Recurrent Neural Networks (RNNs) traditionally involved
ignoring the fact, feeding the time differences as additional inputs, or
resampling the data. All these methods have their shortcomings. We
propose an elegant straightforward alternative approach where instead
the RNN is in effect resampled in time to match the time of the data
or the task at hand. We use Echo State Network (ESN) and Gated
Recurrent Unit (GRU) as the basis for our solution. Such RNNs can
be seen as discretizations of continuous-time dynamical systems, which
gives a solid theoretical ground to our approach. Our Task-Synchronized
ESN (TSESN) and GRU (TSGRU) models allow for a direct model
time setting and require no additional training, parameter tuning, or
computation (solving differential equations or interpolating data) com-
pared to their regular counterparts, thus retaining their original efficiency.
We confirm empirically that our models can effectively compensate for
the time-non-uniformity of the data and demonstrate that they com-
pare favorably to data resampling, classical RNN methods, and alter-
native RNN models proposed to deal with time irregularities on sev-
eral real-world nonuniform-time datasets. We open-source the code at
https://github.com/oshapio/task-synchronized-RNNs.

1 Introduction

A usual assumption about a time series is that it is uniformly sampled in time,
whether applying Recurrent Neural Networks (RNNs) or other models. In reality,
however, this is often not the case for multiple reasons: data is gathered at
irregular intervals, like patient examinations or expeditions; data comes from
sources that get dated, like archaeological or geological samples, historical written
sources; the data is recorded when a certain event happens, like an action by
a user, an accident, a natural phenomenon, economic transaction; neural spike
signals, etc. This can either be an offline or an online setup requiring a real-time
response. Here we deal with the case when the time irregularities are known, i.e.,
data samples have time stamps. Missing values in time series can also be treated
as time irregularity, as long as the data are missing in all the input dimensions
at the same time.

When data is irregularly sampled in time, typically RNNs are not applied,
the time irregularity is ignored, the data are resampled by interpolation, or the

https://github.com/oshapio/task-synchronized-RNNs


2 Mantas Lukoševičius and Arnas Uselis

time irregularities are simply fed as additional inputs in hopes that the model
will learn to properly deal with them. All these approaches have their limitations.

Several specialized RNN architectures have been proposed to address this
problem. They typically treat time irregularities as a special kind of input aiming
in learning to accommodate it better. We review them and other alternatives in
Section 2.

Here we take a bit different approach. Many types of RNNs can be seen as
a discretization of a continuous-time dynamical system. Based on this, we can
re-discretize it online with variable time steps that match the ones in the data
(or the task) at hand. This way, since time is relative, we make the RNN “live”
in the irregular time of the task, as opposed to resampling the data to match
the regular time of the RNN. We investigate this in two instances of RNNs: echo
state networks and gated recurrent units.

The rest of the article is structured in the following way. We discuss related
work in Section 2 and analytically derive our models in Section 3. We then test
our approach on two synthetic chaotic high-precision tasks to confirm empirically
our analytic derivation in Section 4.1 and on two real-world datasets: classification
of signals with missing values in Section 4.2 and prediction of inherently irregular-
time series in Section 4.3. Finally, we discuss the results, limitations, and possible
future work in Section 5.

An early version of this article titled “Time-Adaptive Recurrent Neural Net-
works” has been submitted and double-blind reviewed for a prominent ML
conference in 2019 where it was not accepted. We made the preprint available in
2022 at https://arxiv.org/abs/2204.05192v1 because of another work [27]
that built on it. We have changed the name of the article and the methods in this
latest incarnation because the new name is arguably more precise, and because
an article with a very similar title [13] has been published in the meantime.

2 Related Work

Here we give a short overview of more or less related previous approaches dealing
with time-irregular sequences.

2.1 Direct Time to Output Mapping

One effective, but rather niche class of models capable of dealing with irregularly-
sampled data are models that take time as a real-valued input and map it directly
to the desired outputs. These feed-forward methods have advantages in that
they are stable and can predict not only at the future (forecast) but also at
intermediate time points (impute). On the downside, they typically can not be
reused for other tasks, must be trained separately on each time series, and do
not deal well with multivariate data, and typically can not predict quite far. Any
regression model can in principle be used for that but some are better suited
than others. Gaussian process regression [34] is a powerful probabilistic example
of such.

https://arxiv.org/abs/2204.05192v1


Task-Synchronized Recurrent Neural Networks 3

Various decompositions of the continuous-time series can also be applied, for
example, [9] bridges the gap between Fourier transformation and neural networks.

In this work, we only consider RNNs that have intrinsic memory and state
and process input sequentially.

2.2 RNN Models with Data Pre-Treatment Layers

Much of related previous work deals with medical data that are often both irreg-
ularly sampled in time and have missing values in some of the input dimensions.

There is a class of methods where the data is “sanitized” in the first layer and
fed to RNNs above. The missing medical examination values were imputed and
the data were resampled regularly in time before feeding them to a Long Short-
Term Memory (LSTM) network in [15]. The resampling is prone to information
loss. Similar data has been interpolated by a special trainable semi-parametric
network, after which, other types of models can be applied in [29]. A statistical
approach has been taken in [7], where a Gaussian process is responsible for
handling the missing values and time irregularities of the time series, and then
passes this information to an RNN. These are more sophisticated methods, but
they can suffer from similar information loss since the upper layers receive only
the interpolated data. In addition, the computational complexity of Gaussian-
process-based methods is high. An RNN attention mechanism adapted to handle
multiple periods in data was applied after imputing missing values in [5].

2.3 RNN Models with Special Gates

It is also possible to give the time (or its change) simply as one of the regular
inputs to the network, hoping that the model will learn to treat it correctly. We
also consider, do experiments, and offer some analysis of this option here. The
time input can also be encoded into a vector of useful features before feeding it
to a model, capturing, e.g., relevant periodicity, like time of day, week, or year;
similar to positional encodings in attention-based models.

Several RNN architectures have been introduced that treat time (differences)
as a special kind of input for learning.

The authors of [23] have added special time-scale-dependent states to Gated
Recurrent Unit (GRU) network but have concluded, that such an approach is
not more effective than a simple GRU with time differences as part of the regular
input. Short-term and long-term modeling has been introduced in LSTSMs for
giving recommendations from temporal usage data in [35]. Similarly, GRU-D,
a variation of GRU with additional decay units to its gates and inputs based
on the missingness of the variables was introduced in [2]. It was observed, that
the fact of missing data might also be informative. A slightly different approach
has been taken in [25], where instead of decaying the state, the forgetting of a
network was directly influenced by the time lapse between the events. This direct
transformation of the forget gate has an impact on global memory which in turn
can lead the model to forget about global history based on a longer time gap,
which might not be wanted.



4 Mantas Lukoševičius and Arnas Uselis

To address this problem, Time-Aware LSTM [1] was introduced, which decom-
poses LSTM’s memory cell into two blocks: short-term and long-term memory.
The short-term memory reacts to time irregularities in the same way as in previ-
ous models, while the long-term memory learns how much information to choose
from the short-term memory.

Phased LSTMs [24] allow LSTMs to operate on multiple timescales by intro-
ducing additional time gates to the LSTM units and making them specialize by
opening the gates with different frequencies and phases. The model can also deal
with time-irregular data.

These model variations are a bit similar to our approach, however, they are
based on experimental gate design and require extra learning for the extra time
inputs. Our approach to task-synchronized RNNs is different in that timing is
introduced systematically and directly based on time-sampling the RNNs as
continuous-time dynamical systems, and requires no additional learning. The
previous work that our approaches are directly based on is cited in Section 3.

2.4 RNN Methods Employing Differential Equation Solvers

Another class of RNN methods, similar to our approach, derives from continuous-
time RNNs [6] that are defined using differential equations.

The irregular time sampling problem has been addressed in Neural Ordinary
Differential Equations (Neural ODEs) [3]. They enable computing a state of a
continuous-time RNN at any desired time point using an ODE solver. The ODE
solver, however, does not accommodate RNN inputs, it can only compute the
evolution of its autonomous state.

ODE-RNNs proposed in [26] enable inputs and outputs by mixing the internal
dynamics of a continuous-time RNN computed by Neural ODEs in the absence of
input with a regular discrete-time RNN update whenever an input arrives. These
two types of dynamics, however, do not mix well and are not a very natural way
to introduce inputs, not the way they are introduced in classical continuous-time
RNNs [6].

For that, the inputs must affect the continuous RNN dynamics directly and
continually. This can be done using a Controlled Differential Equation (CDE)
solver as presented in [14]. For this, however, the irregularly-sampled input is
interpolated into a continuous-time signal using a cubic spline. This carries
some of the drawbacks of data resampling and somewhat obsoletes the need for
irregular-time modeling of the RNN unless the outputs also need to be irregularly
sampled in time.

The latter method is probably the closest conceptually and functionally to
our approach, except that we do not interpolate the input data, nor use the
differential equation solvers. It can, however, be employed as an alternative to
our approach to achieving similar goals, and has in fact been done so in [27],
which can be seen as a preliminary offshoot of this work.

A model whose state is governed by a linear stochastic differential equation
and encoder-decoder setup is used to feed the irregularly-sampled inputs and
read the outputs was proposed in [28].



Task-Synchronized Recurrent Neural Networks 5

Here, due to space limitations, we only went through some of the most
prominent and related previous works. A much more comprehensive overview of
RNN approaches handling irregular time data can be found in [32] or [27].

3 Methods

Here we derive our task-synchronized RNNs for two popular types of networks,
discuss their differences and similarities, variations.

3.1 Task-Synchronized Echo State Networks

Echo State Networks (ESNs) [10] dynamics can be seen as a time-discretization
of the differential equation [12]

ḣ =
1

c

(
−αh+ σ(Whx+Uhh)

)
, (1)

where h is the internal activation state and x is the input vector, σ(·) is the
activation function (usually tanh(·)), W· and U· denote the corresponding input
and update weight matrices, c denotes the global time constant and α the leaking
rate. Here, and in other equations, bias weights are subsumed in W·, assuming
that a constant 1 is appended to x. Applying linear Euler discretization

ḣ ≈ hn − hn−1

∆t
(2)

to (1) we get the discrete-time n ESN [12]

hn =

(
1− α

∆t

c

)
hn−1 +

∆t

c
σ
(
Whxn +Uhhn−1

)
. (3)

Here we take α ≡ 1 in (3) to have one meta-parameter less and redefine the
leaking rate as α ≡ 1

c .
1 Normally the discretization step ∆t is constant, and

subsuming it in α = ∆t
c we get the typical ESN update equation

hn = (1− α)hn−1 + ασ
(
Whxn +Uhhn−1

)
. (4)

This is not something new so far. For example, a similar derivation is presented
in [19] and [12], and later in [31], not referncing the prior two.

For our Task-Synchronized ESN (TSESN), we allow ∆t in (3) to be
variable in time and set directly from data, yielding

hn = (1− α∆tn)hn−1 + α∆tnσ
(
Whxn +Uhhn−1

)
. (5)

The time steps of this model can be adapted to the irregular time steps ∆tn of
the data, in effect time-resampling the RNN instead of the data.

Readouts yn from ESNs are typically done in a linear fashion

yn = Wy[xn;hn]. (6)
1 This is a trade-off between simplicity and some performance, which is not necessary

to make.



6 Mantas Lukoševičius and Arnas Uselis

3.2 Task-Synchronized Gated Recurrent Units

Following the same notation, Gated Recurrent Unit (GRU) [4] networks are
governed by

zn = σg(W
zxn +Uzhn−1), (7)

rn = σg(W
rxn +Urhn−1), (8)

hn = (1− zn) ◦ hn−1 + zn ◦ σ
(
Whxn +Uh(rn ◦ hn−1)

)
, (9)

where zt is the update and rt the reset (or forget) gate vectors, σg(·) ∈ (0, 1)
typically stands for a logistic sigmoid, and · ◦ · for element-wise multiplication.

We can observe the similarity between the leaky-integration in ESN (4) and
gating in GRU (9), which was already noted by the authors of [4]. We can further
observe that if GRU (9) receives the variable time step ∆tn as part of input xn,
it can become very similar to TSESN (5) if the reset gate is not used (rn ≡ 1)
and the update gate zn is learned to be α∆tn, and ∆tn is learned to be ignored
elsewhere. This somewhat justifies such an approach (providing ∆tn as part of
input xn to GRU) and could explain why it was hard to beat it in [23]. We refer
to this approach as GRU+∆t in our experiments.

GRU, however, can in itself be seen as a time-discretization of a continuous-
time differential equation similar to (1)

ḣ = z ◦
(
−h+ σ(Whx+Uh(r ◦ h))

)
. (10)

Applying Euler discretization (2) with a constant ∆t to (10), we get the standard
GRU (9). We omit the constants 1

c and α here, as well as ∆t, assuming that they
can be subsumed in the learned z which, fittingly, governs the update rate of h
in (10).2

Letting the ∆t remain adaptive in the discretization process of (10) by (2),
we get Task-Synchronized GRU (TSGRU)

hn = (1−∆tnzn) ◦ hn−1 + (∆tnzn) ◦ σ
(
Whxn +Uh(rn ◦ hn−1)

)
, (11)

instead of (9), similar to (5). The update (7) and reset (8) gates remain unaffected.
This method, compared to feeding ∆tn as part of input xn in GRU (9), has

no additional trained parameters in W· and no need to learn the role of ∆tn,
freeing the gating mechanism to learn other data-related things.

We use readouts yt from all types of GRU similar to ESN (6)

yt = Wy[1;ht]. (12)

Despite similarities, ESN and GRU networks are trained very differently. In
ESNs only Wy (6) is learned in a one-shot linear regression manner, and the
rest of weights remain generated randomly based on a couple of meta-parameters
2 This is again a trade-off, and having more hyper-parameters might somewhat improve

the performance.



Task-Synchronized Recurrent Neural Networks 7

[18]. GRU networks, conversely, are fully end-to-end trained using error back-
propagation and gradient descent [4]. This makes GRUs more expressive at a
cost of training time.

Note, that the model we define in Section 3.1 is in fact a classical RNN with
leaky-integrator units, that could also be fully trained using gradient methods.

3.3 Nonlinear Time Scaling

Having big ∆tn values is a problem for our model, as α∆tn in (5) and ∆tnzn in
(11) should be ≤ 1. We scale ∆tn to [0, 1] dividing them by the maximum, but
with large outliers this might result in many minuscule values.

For these practical reasons we also investigate a replacement of ∆tn with its
nonlinear function f(∆tn) in (5), (11), and also where ∆tn comes as additional
input in other models. This amounts to redefining the derivatives (1) and (10)
as being not with respect to dt but f(dt). In particular we consider f(∆tn) =
1−e−∆tn . Models having this replacement we denote by “exp” in our experiments.

An alternative way to deal with large ∆tn would be to interpolate/infill the
data where the gaps are too wide.

Note that our task-synchronized versions of RNNs are generalizing extensions
that fall back to regular versions when ∆tn is constant, provided that it is
normalized.

4 Experiments

4.1 Synthetic Chaotic Attractor Datasets

To empirically test the validity of our approach we first turn to high-precision
synthetic tasks. ESNs are known for their state-of-the-art performance in pre-
dicting some types of chaotic attractors [11]. This high precision comes in part
from applying linear regression instead of stochastic gradient descent.

We artificially introduce increasing time irregularities to such data and in-
vestigate if TSESN can compensate for them and maintain the state-of-the-art
performance. ESN+∆t, a regular ESN receiving ∆tn as additional input is also
added for comparison.

In the first experiment we use Lorenz chaotic attractor [17] with parameters
σ = 10, β = 8

3 and ρ = 28. We introduce time irregularity factor π and generate
the 3D Lorenz attractor data with ∆tn uniformly sampled from the (max(0, 0.01−
π), 0.01 + π]. The time is regular at ∆tn ≡ 0.01 with π = 0 and becomes more
irregular with increasing π.

We first generate 10 000 timesteps with π = 0 and split the data into 60%
training, 20% validation, and 20% testing sets. We use (TS)ESNs with 500
internal units and grid-search their α, spectral radius of Uh, and regularization of
Wy to find the best meta-parameters by training each model and comparing its
generated sequences with validation. Note that we only select the hyperparameters
for the ESN model; identical hyperparameters are then used for the ESN+∆t
and TSESN.



8 Mantas Lukoševičius and Arnas Uselis

Having the good ESN and TSESN models (which are initially identical) we
then test them with ever more time-irregular data, increasing π each time by
0.001, and each time initializing and testing the models on 50 200-step generative
runs. The performances over the time-irregularity π, which goes to high extremes,
are presented in Figure 1a.

(a) Lorenz

0.00 0.01 0.02 0.03
Time irregularity π

10−7

10−5

10−3

10−1

101

T
es

t 
M

S
E

(b) Mackey-Glass

0.00 0.25 0.50 0.75 1.00
Time irregularity π

10−5

10−3

10−1

101

T
es

t 
M

S
E

ESN

ESN+∆t

TSESN

Fig. 1: Comparison of ESN, ESN+∆t, and TSESN mean error for varying time
irregularity of chaotic attractor data. Shading indicates min/max errors over 50
runs.

We see that the performance of TSESN degrades very slowly with increasing
time irregularity, which confirms the validity of our approach, while the identical
regular ESN becomes unstable (confused) quite fast when encountering time-
irregular data. Curiously, ESN+∆t is not far behind TSESN in this task.

We also did a similar test on a more memory-demanding Mackey-Glass [22]
chaotic attractor with parameters β = 0.2, n = 10, γ = 0.1, and τ = 17. Since the
attractor depends on a fixed time interval τ , we had to first generate the data with
a small (for this dataset) uniform ∆t′ = 0.01, and then produce the time-irregular
data by cubic spline interpolation from this high-regular-sampling-rate data,
uniformly sampling ∆tn from (1− π, 1 + π].

The results are presented in Figure 1b. We can see that TSESN is again
much more robust to time irregularity, but ESN also degrades less in this task.
Curiously again, ESN+∆t is not better than regular ESN in this task and for
high π is even worse.

The GRU and LSTM RNN models performed expectedly poorly on these
high-precision clean synthetic tasks because they use noisy stochastic gradient
descent to learn their weights.

4.2 UWave Gesture Dataset

UWaveGestureAll [16]3 is a univariate time series data set consisting of gesture
patterns of eight types. The dataset contains 890 training and 3 580 testing
3 UWaveGestureLibraryAll is available at http://timeseriesclassification.com.

http://timeseriesclassification.com


Task-Synchronized Recurrent Neural Networks 9

samples, where each sample consists of 900 data points. We follow the methodology
used in [8] and [29] by sampling random 10% out of every sample. For evaluation,
30% of the training data was used for validation. Each trainable model was
iterated for 100 epochs for 10 times with random models’ initialization. Also,
each ESN variation had 500 neurons in its reservoir, while the other baselines
had 100 neurons in their hidden layers. Moreover, the leaking rate and spectral
radius scaling hyper-parameters for ESN variations were found using grid search.

101 102 103 104 105

Time, s

0.75

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

GRU-F

GRU-(D, HD)

GP-GRUIPred-GRU
TSESNexp

TSESN

LSTM

LSTM+∆t

GRU

GRU+∆t

TSGRU

TSGRUexp

Fig. 2: Time and performance comparison on UWaveGesture dataset. Proposed
variations are marked in orange. Simple ESN was omitted due to subpar perfor-
mance on this task.

Furthermore, we compare the results reported in [29]. Concretely, we report
the following baselines, that performed most notably: GRU-F, where the missing
values are imputed with the last observation of the series, GRU-D [2], which adds
exponential decaying in the input and the hidden state, when the variable is not
observed, GRU-HD [2], where the decay is only introduced in the hidden state
and not the input, GP-GRU [7], a Gaussian process, with GRU as a classifier, and
IPred-GRU [29], an interpolation-prediction network with GRU as a classifier.
Each of the baselines had 128 neurons in GRU classifier hidden state. The training
time was scaled to match the hardware differences with [29].

From each of the training sessions, the best model based on the validation
loss was chosen. Averaged results are presented in Table 1.

From the results in Table 1 we can see that TSESNs proved to be very
good in both performance and training time. We found that the regular ESN
was quite sensitive to its random weight generation in this time-irregular task,
which explains its poor performance and high standard deviation. TSGRU also
performed significantly better than regular GRU or LSTM models and slightly
better compared to versions GRU+∆t and LSTM+∆t that receive ∆tn as inputs.



10 Mantas Lukoševičius and Arnas Uselis

Table 1: Results on UWaveGestureAll dataset. *results reported by [29].
Model Parameters Accuracy Training time, s f(∆tn)

GRU-F* 50,952 0.855 4.840× 102 -
GRU-D* [2] ? 0.860 6.810× 102 exp
GRU-HD* [2] ? 0.860 6.900× 102 exp
GP-GRU* [7] ? 0.948 8.365× 104 -
IPred-GRU* [29] 51,721 0.935 1.463× 103 -

ESN 4,016 0.567 ± 0.265 1.101× 101 linear
TSESN 4,016 0.921 ± 0.006 1.277× 101 exp
TSESN 4,016 0.903 ± 0.011 1.150× 101 linear

LSTM 41,608 0.794 ± 0.016 1.445× 102 -
LSTM+∆t 42,008 0.882 ± 0.009 1.500× 102 linear
GRU 31,408 0.773 ± 0.009 1.579× 102 -
GRU+∆t 31,708 0.861 ± 0.007 1.733× 102 linear
TSGRU 31,408 0.893 ± 0.010 2.341× 102 linear
TSGRU 31,408 0.876 ± 0.012 2.410× 102 exp

The training time of TSGRU was impaired because of our custom unoptimized
modifications made to the standard Keras implementation.

4.3 Speleothem Dataset

To evaluate RNNs on a real-world generative task, we use the readings of oxygen
isotopes obtained from speleothems in the Indian cave [30] dataset. We use
the first 1 800 univariate samples, of which 1 700 are used for training, 50 for
validation, and the last 50 for testing. We trained conventional RNN models
for 100 epochs and repeated this process for 10 times with random models’
initialization. The optimal number of neurons was found through a grid search to
be 30 for the trainable RNN baselines and 50 for the ESN baselines. Grid search
was also carried out to find the optimal leaking rate and spectral radius scaling
for ESN variants.

Since ESNs support one-shot learning through linear regression, we exploited
the feature that cross-validation (CV) on temporal data can be done very effi-
ciently for them, with minimal overhead [20,21]. Concretely, each fold consisted
of 50 consecutive samples, and the hyper-parameters were chosen based on the
mean validation error. For testing, ESN’s readout weights were recomputed from
the whole training sequence.

We have tested three variations of each RNN baseline: regular RNNs, where
the model is not aware of any time irregularities, RNNs with ∆tn as an additional
input, and a variation, where the RNNs received interpolated training sequence
as the input. In the interpolated variation (which we refer to as “Interp.”), the
whole training sequence was resampled into regular-time time series with linear
interpolation before feeding it in. Then, to evaluate this model, the predicted



Task-Synchronized Recurrent Neural Networks 11

time series with regular sampling were again resampled with linear interpolation
to match the irregular time points of the original time series, and errors were
computed.

Table 2: Results on the Speleothem dataset
Model Valid. RMSE Test RMSE Test MAPE f(∆tn) Valid. type

ESN 0.117 ± 0.009 0.425 ± 0.064 4.311 ± 0.702 linear standard
ESN+∆t 0.161 ± 0.036 0.348 ± 0.044 3.377 ± 0.456 linear standard
Interp. ESN 0.139 ± 0.022 0.346 ± 0.093 3.397 ± 0.998 linear standard
TSESN 0.129 ± 0.008 0.408 ± 0.026 4.125 ± 0.296 exp standard
TSESN 0.120 ± 0.011 0.490 ± 0.021 4.952 ± 0.237 linear standard

GRU 0.169 ± 0.010 0.351 ± 0.028 3.401 ± 0.304 linear standard
LSTM 0.160 ± 0.001 0.405 ± 0.009 3.999 ± 0.103 linear standard
GRU+∆t 0.164 ± 0.003 0.366 ± 0.017 3.559 ± 0.192 linear standard
LSTM+∆t 0.162 ± 0.001 0.403 ± 0.023 3.981 ± 0.267 linear standard
Interp. GRU 0.171 ± 0.010 0.334 ± 0.022 3.206 ± 0.236 linear standard
Interp. LSTM 0.157 ± 0.002 0.383 ± 0.010 3.738 ± 0.118 linear standard
TSGRU 0.187 ± 0.021 0.349 ± 0.053 3.389 ± 0.577 linear standard

ESN 0.193 ± 0.005 0.185 ± 0.006 1.709 ± 0.057 exp CV
ESN+∆t 0.201 ± 0.005 0.244 ± 0.001 2.340 ± 0.010 exp CV
Interp. ESN 0.183 ± 0.004 0.304 ± 0.005 2.917 ± 0.051 exp CV
TSESN 0.199 ± 0.008 0.159 ± 0.002 1.478 ± 0.017 exp CV
TSESN 0.182 ± 0.004 0.346 ± 0.014 3.333 ± 0.150 linear CV

From the results in Table 2 it can be seen that among the standard-validated
methods, the interpolated GRU model yielded the best results on the testing set,
with interpolated ESN, ESN+∆t, and TSGRU not far behind.

However, ESN-based methods’ ability to be efficiently cross-validated [20,21]
gave the best effect here. This probably has to do with (the lack of) stationarity of
this eons-long time series. Cross-validated TSESN with exponential time function
produced by far the best testing results among all the tried methods.

5 Discussion

Our analytically derived models of task-synchronized RNNs tested with success in
thorough numerical simulations with both synthetic and real-world non-uniform
time data.

The same task-synchronized RNN idea is in principle applicable to other
RNN architectures like BPTT-trained [33] RNN or LSTM. But in this work, we
preferred ESN over fully-trained RNN, because it is simpler and efficient to train
and cross-validate, and GRU over LSTM, because it is simpler and closer to ESN.
Task-synchronizing other RNN models is a promising future work.



12 Mantas Lukoševičius and Arnas Uselis

Our models also have some limitations.
As mentioned, large time gaps are problematic. This is mitigated by the non-

linear transformation of ∆tn introduced in Section 3.3, but in some applications
filling these big gaps in data by some type of imputation might be the way to go.
An analogy could be building a bridge: the span (∆tn) between two subsequent
piles (data points) can vary to an extent, but if it is too large, we may need to
build an additional pile (impute a data point) or several in the middle.

The asynchronous arrival of data in different input dimensions is not handled
by this class of models without interpolating/infilling the data.

∆tn variations in the data are potentially invisible to our models, which is
often an advantage, but can in some cases have useful information in themselves.

The time-discretization of the models could also potentially be done using
a more sophisticated differential equation solver like in [14] or [27] than the
straightforward linear Euler approximation used here.

The advantages of the current approach, however, are its speed, directness,
and simplicity. It allows dealing with time-irregular data systematically and
effectively while training and using different types of task-synchronized RNNs
in virtually the same way as the classical discrete-time ones, and not inventing
(interpolating/infilling) new data.

We share the source code at
https://github.com/oshapio/task-synchronized-RNNs.

References

1. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient subtyp-
ing via time-aware LSTM networks. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 65–74.
ACM (2017)

2. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks
for multivariate time series with missing values. Scientific reports 8(1), 6085 (2018)

3. Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary
differential equations. In: Advances in Neural Information Processing Systems. pp.
6571–6583 (2018)

4. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR abs/1406.1078 (2014), http://arxiv.org/abs/1406.1078

5. Cinar, Y.G., Mirisaee, H., Goswami, P., Gaussier, E., Aït-Bachir, A.: Period-
aware content attention RNNs for time series forecasting with missing values.
Neurocomputing 312, 177–186 (2018)

6. ichi Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by
continuous time recurrent neural networks. Neural Networks 6(6), 801–806
(1993). https://doi.org/https://doi.org/10.1016/S0893-6080(05)80125-X,
https://www.sciencedirect.com/science/article/pii/S089360800580125X

7. Futoma, J., Hariharan, S., Heller, K.: Learning to detect sepsis with a multi-
task Gaussian process RNN classifier. In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. pp. 1174–1182. JMLR. org (2017)

https://github.com/oshapio/task-synchronized-RNNs
http://arxiv.org/abs/1406.1078
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80125-X
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80125-X
https://www.sciencedirect.com/science/article/pii/S089360800580125X


Task-Synchronized Recurrent Neural Networks 13

8. Futoma, J., Hariharan, S., Sendak, M., Brajer, N., Clement, M., Bedoya, A., O’Brien,
C., Heller, K.: An improved multi-output Gaussian process RNN with real-time
validation for early sepsis detection. arXiv preprint arXiv:1708.05894 (2017)

9. Godfrey, L.B., Gashler, M.S.: Neural decomposition of time-series data for effective
generalization. IEEE transactions on neural networks and learning systems 29(7),
2973–2985 (2018)

10. Jaeger, H.: The “echo state” approach to analysing and training recurrent neu-
ral networks. Tech. Rep. GMD Report 148, German National Research Cen-
ter for Information Technology (2001), https://www.ai.rug.nl/minds/uploads/
EchoStatesTechRep.pdf

11. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless communication. Science 304(5667), 78–80 (2004). https:
//doi.org/10.1126/science.1091277, https://www.ai.rug.nl/minds/uploads/
ESNScience04.pdf

12. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applica-
tions of echo state networks with leaky-integrator neurons. Neural Networks 20(3),
335–352 (2007)

13. Kag, A., Saligrama, V.: Time adaptive recurrent neural network. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 15149–15158 (June 2021)

14. Kidger, P., Morrill, J., Foster, J., Lyons, T.: Neural controlled differential equations
for irregular time series. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 6696–
6707. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper_
files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf

15. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM
recurrent neural networks. arXiv preprint arXiv:1511.03677 (2015)

16. Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uwave: Accelerometer-
based personalized gesture recognition and its applications. Pervasive and Mobile
Computing 5(6), 657–675 (2009)

17. Lorenz, E.N.: Deterministic nonperiodic flow. Journal of Atmospheric Science 20,
130–141 (1963)

18. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon,
G., Orr, G.B., Müller, K.R. (eds.) Neural Networks: Tricks of the Trade, 2nd
Edition, LNCS, vol. 7700, pp. 659–686. Springer (2012). https://doi.org/10.1007/
978-3-642-35289-8_36, http://dx.doi.org/10.1007/978-3-642-35289-8_36

19. Lukoševičius, M., Popovici, D., Jaeger, H., Siewert, U.: Time warping invariant
echo state networks. Tech. Rep. No. 2, Jacobs University Bremen (May 2006),
https://www.ai.rug.nl/minds/uploads/techreport2.pdf

20. Lukoševičius, M., Uselis, A.: Efficient cross-validation of echo state networks. In: Ar-
tificial Neural Networks and Machine Learning –ICANN 2019: Workshop and Special
Sessions. ICANN 2019. Lecture Notes in Computer Science, vol. 11731, pp. 121–
133. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5_12,
https://link.springer.com/chapter/10.1007/978-3-030-30493-5_12, presen-
tation slides included

21. Lukoševičius, M., Uselis, A.: Efficient implementations of echo state network
cross-validation. Cognitive Computation pp. 1–15 (2021). https://doi.org/
10.1007/s12559-021-09849-2, https://link.springer.com/article/10.1007/
s12559-021-09849-2

22. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems.
Science 197(4300), 287–289 (1977)

https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://www.ai.rug.nl/minds/uploads/ESNScience04.pdf
https://www.ai.rug.nl/minds/uploads/ESNScience04.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
http://dx.doi.org/10.1007/978-3-642-35289-8_36
https://www.ai.rug.nl/minds/uploads/techreport2.pdf
https://doi.org/10.1007/978-3-030-30493-5_12
https://doi.org/10.1007/978-3-030-30493-5_12
https://link.springer.com/chapter/10.1007/978-3-030-30493-5_12
https://doi.org/10.1007/s12559-021-09849-2
https://doi.org/10.1007/s12559-021-09849-2
https://doi.org/10.1007/s12559-021-09849-2
https://doi.org/10.1007/s12559-021-09849-2
https://link.springer.com/article/10.1007/s12559-021-09849-2
https://link.springer.com/article/10.1007/s12559-021-09849-2


14 Mantas Lukoševičius and Arnas Uselis

23. Mozer, M.C., Kazakov, D., Lindsey, R.V.: Discrete event, continuous time RNNs.
arXiv preprint arXiv:1710.04110 (2017)

24. Neil, D., Pfeiffer, M., Liu, S.C.: Phased LSTM: Accelerating recurrent network
training for long or event-based sequences. In: Proceedings of the 30th International
Conference on Neural Information Processing Systems. pp. 3889–3897. NIPS’16, Cur-
ran Associates Inc., USA (2016), http://dl.acm.org/citation.cfm?id=3157382.
3157532

25. Pham, T., Tran, T., Phung, D.Q., Venkatesh, S.: Deepcare: A deep dynamic memory
model for predictive medicine. CoRR abs/1602.00357 (2016)

26. Rubanova, Y., Chen, R.T.Q., Duvenaud, D.K.: Latent ordinary differential
equations for irregularly-sampled time series. In: Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems. vol. 32. Curran Associates,
Inc. (2019), https://proceedings.neurips.cc/paper_files/paper/2019/file/
42a6845a557bef704ad8ac9cb4461d43-Paper.pdf

27. Schake, E.J.: Recurrent neural network approaches to irregularly sampled data.
Master’s thesis, Kaunas University of Technology, Kaunas, Lithuania (2022), https:
//epubl.ktu.edu/object/elaba:132820469/

28. Schirmer, M., Eltayeb, M., Lessmann, S., Rudolph, M.: Modeling irregular time
series with continuous recurrent units. In: Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International
Conference on Machine Learning. Proceedings of Machine Learning Research,
vol. 162, pp. 19388–19405. PMLR (17–23 Jul 2022), https://proceedings.mlr.
press/v162/schirmer22a.html

29. Shukla, S.N., Marlin, B.: Interpolation-prediction networks for irregularly sampled
time series. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=r1efr3C9Ym

30. Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S.F., Berkelhammer, M., Mudelsee,
M., Biswas, J., Edwards, R.L.: Trends and oscillations in the indian summer monsoon
rainfall over the last two millennia. Nature communications 6, 6309 (2015)

31. Tallec, C., Ollivier, Y.: Can recurrent neural networks warp time? arXiv preprint
arXiv:1804.11188 (2018)

32. Weerakody, P.B., Wong, K.W., Wang, G., Ela, W.: A review of irregular time
series data handling with gated recurrent neural networks. Neurocomputing 441,
161–178 (2021). https://doi.org/10.1016/j.neucom.2021.02.046, https://www.
sciencedirect.com/science/article/pii/S0925231221003003

33. Werbos, P.J.: Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE 78(10), 1550–1560 (1990)

34. Williams, C., Rasmussen, C.: Gaussian processes for regression. In: Touretzky, D.,
Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems.
vol. 8. MIT Press (1995), https://proceedings.neurips.cc/paper_files/paper/
1995/file/7cce53cf90577442771720a370c3c723-Paper.pdf

35. Zhu, Y., Li, H., Liao, Y., Wang, B., Guan, Z., Liu, H., Cai, D.: What to do
next: Modeling user behaviors by time-LSTM. In: Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. pp. 3602–
3608 (2017). https://doi.org/10.24963/ijcai.2017/504, https://doi.org/10.
24963/ijcai.2017/504

http://dl.acm.org/citation.cfm?id=3157382.3157532
http://dl.acm.org/citation.cfm?id=3157382.3157532
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://epubl.ktu.edu/object/elaba:132820469/
https://epubl.ktu.edu/object/elaba:132820469/
https://proceedings.mlr.press/v162/schirmer22a.html
https://proceedings.mlr.press/v162/schirmer22a.html
https://openreview.net/forum?id=r1efr3C9Ym
https://openreview.net/forum?id=r1efr3C9Ym
https://doi.org/10.1016/j.neucom.2021.02.046
https://doi.org/10.1016/j.neucom.2021.02.046
https://www.sciencedirect.com/science/article/pii/S0925231221003003
https://www.sciencedirect.com/science/article/pii/S0925231221003003
https://proceedings.neurips.cc/paper_files/paper/1995/file/7cce53cf90577442771720a370c3c723-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1995/file/7cce53cf90577442771720a370c3c723-Paper.pdf
https://doi.org/10.24963/ijcai.2017/504
https://doi.org/10.24963/ijcai.2017/504
https://doi.org/10.24963/ijcai.2017/504
https://doi.org/10.24963/ijcai.2017/504

	Task-Synchronized Recurrent Neural Networks

