
Time-Adaptive Recurrent Neural Networks

Mantas Lukoševičius
Faculty of Informatics

Kaunas University of Technology
LT-51368 Kaunas, Lithuania

mantas.lukosevicius@ktu.lt

Arnas Uselis
Faculty of Informatics

Kaunas University of Technology
LT-51368 Kaunas, Lithuania

auselis@gmx.com

Abstract

Data are often sampled irregularly in time. Dealing with this using Recurrent
Neural Networks (RNNs) traditionally involved ignoring the fact, feeding the time
differences as additional inputs, or resampling the data. All these methods have
their shortcomings. We propose an elegant alternative approach where instead the
RNN is in effect resampled in time to match the time of the data. We use Echo
State Network (ESN) and Gated Recurrent Unit (GRU) as the basis for our solution.
Such RNNs can be seen as discretizations of continuous-time dynamical systems,
which gives a solid theoretical ground for our approach. Similar recent observations
have been made in feed-forward neural networks as neural ordinary differential
equations. Our Time-Adaptive ESN (TAESN) and GRU (TAGRU) models allow
for a direct model time setting and require no additional training, parameter tuning,
or computation compared to the regular counterparts, thus retaining their original
efficiency. We confirm empirically that our models can effectively compensate for
the time-non-uniformity of the data and demonstrate that they compare favorably
to data resampling, classical RNN methods, and alternative RNN models proposed
to deal with time irregularities on several real-world nonuniform-time datasets.

1 Introduction

A usual assumption when applying Recurrent Neural Networks (RNNs) is that the time series
is uniformly sampled in time. In reality, however, this is often not the case because of multiple
reasons: data is gathered at irregular intervals, like patient examinations, expeditions; data comes
from sources that get dated, like archaeological or geological samples, historical written sources;
the data is recorded when a certain event happens, like an action by a user, an accident, a natural
phenomenon, economic transaction; neural spike signals, etc. Here we deal with the case when the
time irregularities are known, i.e., data samples have time stamps. Missing values in time series can
also be treated as time-irregularity, as long as the data are missing in all input dimensions at the same
time.

When data is irregularly sampled in time, typically RNNs are not applied, the time irregularity is
ignored, the data are resampled by interpolation, or the time irregularities are simply fed as additional
inputs in hopes that the model will learn to properly deal with them. All these approaches have their
limitations.

Several specialized RNN architectures have been proposed recently to address this problem. They
typically treat time irregularities as a special kind of input aiming in learning to accommodate it
better. We review them and other alternatives in Section 2.

Here we take a bit different approach. Many types of RNNs can be seen as discretizations of
continuous-time dynamical systems. Based on this, we can re-discretize them with variable time

Preprint. Under review.



steps that can be adapted to match the ones in the data. This way, since time is relative, we make
RNNs “live” in the time of the data, as opposed to resample the data to match the regular time of
RNNs. We investigate this in two instances of RNNs: echo state networks and gated recurrent units.

The rest of the article is structured in the following way. We discuss related work in Section 2 and
analytically derive our models in Section 3. We then test our approach on two synthetic chaotic high-
precision tasks to confirm empirically our analytic derivation in Section 4.1, and on two real-world
datasets: classification of signals with missing values in Section 4.2 and prediction of inherently
irregular-time series in Section 4.3. Finally, we discuss the results, limitations, and possible future
work in Section 5.

2 Related Work

One effective, but rather niche class of models capable of dealing with irregularly-sampled data are
models that take time as input and map it directly to the desired outputs. These feed-forward methods
have advantages in that they are stable, can predict not only at the future but also at intermediate time
points. On the downside, they typically can not be reused for other tasks, must be trained separately
on each time series, and do not deal well with multivariate data. A nice recent example is [8]. In this
work we only consider RNNs that have intrinsic memory and state.

Much of related previous work deals with medical data that are often both irregularly sampled in time
and have missing values in some of the input dimensions.

There is a class of methods where the data is “sanitized” in the first layer and fed to RNNs above.
The missing medical examination values were imputed and the data were resampled regularly in time
before feeding them to Long Short Term Memory (LSTM) network in [12]. The resampling is prone
to information loss. Recently, similar data has been interpolated by a special trainable semi-parametric
network, after which, other types of models can be applied [21]. A statistical approach has been taken
in [6], where a Gaussian process is responsible for handling the missing values and time irregularities
of the time series, and then passes this information to RNN. These are more sophisticated methods,
but they can suffer from similar information loss since the upper layers receive only the interpolated
data. In addition, the computational complexity of Gaussian-process-based methods is high. An RNN
attention mechanism adapted to handle multiple periods in data was applied after imputing missing
values in [5].

It is also possible to give the time (or its change) simply as one of the regular inputs to the network,
hoping that the model will learn to treat it correctly. We also consider, do experiments, and offer
some analysis of this option here.

Recently, several RNN architectures have been introduced that treat time (differences) as a special
kind of input for learning.

The authors of [18] have added special time-scale-dependent states to Gated Recurrent Unit (GRU)
network but have concluded, that such an approach is not more effective than a simple GRU with
time differences as part of the regular input. Short-term and long-term modeling has been introduced
in LSTSMs for giving recommendations from temporal usage data in [25]. Similarly, GRU-D, a
variation of GRU with additional decay units to its gates and inputs based on the missingness of
the variables was introduced in [2]. It was observed, that the fact of missing data might also be
informative. A slightly different approach has been taken in [20], where instead of decaying the state,
the forgetting of a network was directly influenced by the time lapse between the events. This direct
transformation of forget gate has an impact on global memory which in turn can lead the model to
forget about global history based on a longer time gap, which might not be wanted.

To address this problem, Time-Aware LSTM [1] was introduced, which decomposes LSTM’s memory
cell into two blocks: short-term and long-term memory. The short-term memory reacts to time
irregularities in the same way as in previous models, while the long-term memory learns how much
information to choose from the short-term memory.

Phased LSTMs [19] allow LSTMs to operate on multiple timescales by introducing additional time
gates to the LSTM units and making them specialize by opening the gates with different frequencies
and phases. The model can also deal with time-irregular data.

2



These model variations, however, are based on experimental gate design and require extra learning
for the extra time inputs. Our approach to time-adaptive RNNs is different in that timing is introduced
systematically based on time-sampling the RNNs as continuous-time dynamical systems, and requires
no additional learning. The previous work that our approaches are directly based on is cited in Section
3.

Lastly, the irregular-sampling problem has been addressed in Neural Ordinary Differential Equations
(Neural ODEs) [3], where the derivative of the hidden state is learned using a neural network. In
such an approach, a black-box ODE solver can be used to compute the output of the network where
irregular timings can be incorporated into the solver naturally. However, in that work, a standard
RNN encoder had to be used for the initialization of the ODE-Net, and since the RNN was not aware
of the sampling rate of the time series, this approach can not be used for multiple sequences with
distinct sampling rates.

3 Methods

We derive our adaptive-time RNNs for two popular types of networks, discuss their differences and
similarities, variations.

3.1 Time-Adaptive Echo State Networks

Echo State Networks (ESNs) [9] dynamics can be seen as a time-discretization of the differential
equation [11]

ḣ =
1

c

(
−αh+ σ(Whx+Uhh)

)
, (1)

where h is the internal activation state and x is the input vector, σ(·) is the activation function (usually
tanh(·)), W· and U· denote the corresponding input and update weight matrices, c denotes the
global time constant and α the leaking rate. Here, and in other equations, bias weights are subsumed
in W·, assuming that a constant 1 is appended to x. Applying linear Euler discretization

ḣ ≈ hn − hn−1

∆t
(2)

to (1) we get the discrete-time n ESN [11]

hn =

(
1− α

∆t

c

)
hn−1 +

∆t

c
σ
(
Whxn +Uhhn−1

)
. (3)

Here we take α ≡ 1 in (3) to have one meta-parameter less and redefine the leaking rate as α ≡ 1
c .1

Normally the discretization step ∆t is constant, and subsuming it in α = ∆t
c we get the typical ESN

update equation
hn = (1− α)hn−1 + ασ

(
Whxn +Uhhn−1

)
. (4)

This is not something new so far. A similar derivation is presented in [16] and [11], and later
(independently?) in [23].

For our Time-Adaptive ESN (TAESN), we allow ∆t in (3) to be variable in time and set directly
from data, yielding

hn = (1− α∆tn)hn−1 + α∆tnσ
(
Whxn +Uhhn−1

)
. (5)

The time steps of this model can be adapted to the irregular time steps ∆tn of the data, in effect
time-resampling the RNN instead of the data.

Readouts yn from ESNs are typically done in a linear fashion

yn = Wy[xn;hn]. (6)
1This is a trade-off between simplicity and some performance, which is not necessary to make.

3



3.2 Time-Adaptive Gated Recurrent Units

Following the same notation, Gated Recurrent Unit (GRU) [4] networks are governed by
zn = σg(W

zxn +Uzhn−1), (7)
rn = σg(W

rxn +Urhn−1), (8)

hn = (1− zn) ◦ hn−1 + zn ◦ σ
(
Whxn +Uh(rn ◦ hn−1)

)
, (9)

where zt is the update and rt the reset (or forget) gate vectors, σg(·) ∈ (0, 1) typically stands for a
logistic sigmoid, and · ◦ · for element-wise multiplication.

We can observe the similarity between the leaky-integration in ESN (4) and gating in GRU (9), which
was already noted by the authors of [4]. We can further observe that if GRU (9) receives the variable
time step ∆tn as part of input xn, it can become very similar to TAESN (5) if the reset gate is not used
rn ≡ 1 and the update gate zn is learned to be α∆tn, and ∆tn is learned to be ignored elsewhere.
This somewhat justifies such an approach (providing ∆tn as part of input xn to GRU) and could
explain why it was hard to beat it in [18]. We refer to this approach as GRUT in our experiments.

GRU, however, can in itself be seen as a time-discretization of a continuous-time differential equation
similar to (1)

ḣ = z ◦
(
−h+ σ(Whx+Uh(r ◦ h))

)
. (10)

Applying Euler discretization (2) with a constant ∆t to (10), we get the standard GRU (9). We omit
1
c and α here, as well as ∆t, assuming that they can be subsumed in the learned z which, fittingly,
governs the update rate of h in (10).2

Letting the ∆t remain adaptive in the discretization process of (10) by (2), we get Time-Adaptive
GRU (TAGRU)

hn = (1−∆tnzn) ◦ hn−1 + (∆tnzn) ◦ σ
(
Whxn +Uh(rn ◦ hn−1)

)
, (11)

instead of (9), similar to (5). The update (7) and reset (8) gates remain unaffected.

This method, compared to feeding ∆tn as part of input xn in GRU (9), has no additional trained
parameters in W· and no need to learn the role of ∆tn, freeing the gating mechanism to learn other
data-related things.

We use readouts yt from all types of GRU similar to ESN (6)
yt = Wy[1;ht]. (12)

Despite similarities, ESN and GRU networks are trained very differently. In ESNs only Wy (6) is
learned in a one-shot linear regression manner, and the rest of weights remain generated randomly
based on a couple of meta-parameters [15]. GRU networks, conversely, are fully end-to-end trained
using error back-propagation and gradient descent [4]. This makes GRUs more expressive at a
cost of training time. Note, that the model we define in Section 3.1 is in fact a classical RNN with
leaky-integrator units, that could also be fully trained using gradient methods.

3.3 Nonlinear time scaling

Having big ∆tn values is a problem for our model, as α∆tn in (5) and ∆tnzn in (11) should be ≤ 1.
We scale ∆tn to [0, 1] dividing them by the maximum, but with large outliers this might result in
many minuscule values. For these practical reasons we also investigate a replacement of ∆tn with
its nonlinear function f(∆tn) in (5), (11), and also where ∆tn comes as additional input in other
models.

This amounts to redefining the derivatives (1) and (10) as being not with respect to dt but f(dt).

In particular we consider f(∆tn) = 1− e−∆tn . Models having this replacement we denote by “exp”
in our experiments.

An alternative way to deal with large ∆tn would be to interpolate/infill the data where the gaps are
too wide.

Note that our time-adaptive versions of RNNs are generalizing extensions that fall back to regular
versions when ∆tn is constant, provided that it is normalized.

2This is again a trade-off, and having more hyper-parameters might somewhat improve the performance.

4



4 Experiments

4.1 Synthetic chaotic attractor datasets

To empirically test the validity of our approach we first turn to high-precision synthetic tasks. ESNs
are known for their state-of-the-art performance in predicting some types of chaotic attractors [10].
This high precision comes in part from applying linear regression instead of stochastic gradient
descent.

We artificially introduce increasing time irregularities to such data and investigate if TAESN can
compensate for them and maintain the state-of–the-art performance.

In the first experiment we use Lorenz chaotic attractor [14] with parameters σ = 10, β = 8
3 and

ρ = 28. We introduce time irregularity factor π and generate the 3D Lorenz attractor data with ∆tn
uniformly sampled from the (max(0, 0.01− π), 0.01 + π]. The time is regular at ∆tn ≡ 0.01 with
π = 0 and becomes more irregular with increasing π.

We first generate 10 000 timesteps with π = 0 and split the data into 60% training, 20% validation,
and 20% testing sets. We use (TA)ESNs with 500 internal units and grid-search their α, spectral
radius of Uh, and regularization of Wy to find the best meta-parameters by training each model and
comparing its generated sequences with validation.

Having the good ESN and TAESN models (which are initially identical) we then test them with ever
more time-irregular data, increasing π each time by 0.01, and each time initializing and testing the
models on 200 step generative runs. The performances over the time-irregularity π are presented in
Figure 1a.

0.000 0.005 0.010 0.015 0.020 0.025
Time irregularity, 

10 9

10 7

10 5

10 3

10 1

101

103

M
SE

ESN
TAESN

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Time irregularity, 

10 6

10 5

10 4

10 3

10 2

10 1

100

M
SE

ESN
TAESN

(b)

Figure 1: Comparison of ESN and TAESN error for varying time irregularity of chaotic attractor
data. Dotted lines indicate median and shading indicates min/max errors over 50 runs. (a) Lorenz (b)
Mackey-Glass.

We see that the performance of TAESN degrades very slowly with increasing time irregularity, which
confirms the validity of our approach, while the identical regular ESN becomes unstable (confused)
quite fast when encountering time-irregular data.

We also did a similar test on a more memory-demanding Mackey-Glass [17] chaotic attractor with
parameters β = 0.2, n = 10, γ = 0.1, and τ = 17. Since the attactor depends on a fixed time interval
τ , we had to first generate the data with a small (for this dataset) uniform ∆t′ = 0.01, and then
produce the time-irregular data by cubic spline interpolation from this high-regular-sampling-rate
data, sampling ∆tn from (1− π, 1 + π].

The results are presented in Figure 1b. We can see that TAESN is again more robust to time-
irregularity, but ESN also degrades less in this task. The systematic variations of performance
depending on π could probably be explained on how precisely the time steps hit τ , as the results were
repeated with the same random ∆tn, just scaled differently depending on π.

5



The GRU and LSTM RNN models performed expectedly poorly on these high-precision clean
synthetic tasks because they use noisy stochastic gradient descent.

4.2 UWave gesture dataset

UWaveGestureAll [13] 3 is a univariate time series data set consisting of gesture patterns of eight
types. The dataset contains 890 training and 3 580 testing samples, where each sample consists of
900 data points. We follow the methodology used in [7] and [21] by sampling random 10% out
of every sample. For evaluation, 30% of the training data was used for validation. Each trainable
model was iterated for 100 epochs for 10 times with random models’ initialization. Also, each ESN
variation had 500 neurons in its reservoir, while the other baselines had 100 neurons in their hidden
layers. Moreover, the leaking rate and spectral radius scaling hyper-parameters for ESN variations
were found using grid-search.

Figure 2: Time and performance comparison on
UWaveGesture dataset. Proposed variations are
marked in red. ESNT variation was omitted due
to lower performance. Results are plotted on a
logarithmic axis for clarity.

Furthermore, we compare the results reported
in [21]. Concretely, we report the following
baselines, that performed most notably: GRU-
F, where the missing values are imputed with
the last observation of the series, GRU-D [2],
which adds exponential decaying in the input
and the hidden state, when the variable is not
observed, GRU-HD [2], where the decay is only
introduced in the hidden state and not the input,
GP-GRU [6], a Gaussian process, with GRU as a
classifier, and IPred-GRU [21], an interpolation-
prediction network with GRU as a classifier.
Each of the baselines had 128 neurons in GRU
classifier hidden state. The training time was
scaled to match the hardware differences with
[21].

From each of the training sessions, the best
model based on the validation loss was chosen.
Averaged results are presented in Table 1.

Table 1: Results on UWaveGestureAll dataset.
Model Parameters Accuracy Training time, s f(∆tn)

GRU-F* [21] 50 952 0.855 4.840× 102 –
GRU-D* [2] ? 0.860 6.810× 102 exp

GRU-HD* [2] ? 0.860 6.900× 102 exp
GP-GRU* [6] ? 0.948 8.365× 104 –

IPred-GRU* [21] 51 721 0.935 1.463× 103 –

ESNT 4 016 0.567 ± 0.265 1.101× 101 linear
TAESN 4 016 0.903 ± 0.011 1.150× 101 linear
TAESN 4 016 0.921 ± 0.006 1.277× 101 exp

LSTM 41 608 0.794 ± 0.016 1.445× 102 –
LSTMT 42 008 0.882 ± 0.009 1.500× 102 linear

GRU 31 408 0.773 ± 0.009 1.579× 102 –
GRUT 31 708 0.861 ± 0.007 1.733× 102 linear

TAGRU 31 408 0.893 ± 0.010 2.341× 102 linear
TAGRU 31 408 0.876 ± 0.012 2.410× 102 exp

* Results reported in [21].

3UWaveGestureLibraryAll is available at http://timeseriesclassification.com.

6

http://timeseriesclassification.com


From the results in Table 1 we can see that TAESNs proved to be very good in both performance and
training time. We found that the regular ESN was quite sensitive to its random weight generation in
this time-irregular task, which explains its poor performance and high standard deviation. TAGRU
also performed significantly better than regular GRU or LSTM models and slightly better compared
to versions GRUT and LSTMT that receive ∆tn as inputs. The training time of TAGRU was severely
impaired, because of our custom unoptimized modifications made to the standard Keras libraries.

4.3 Speleothem dataset

To evaluate RNNs on a real-world generative task, we use the readings of oxygen isotopes obtained
from speleothems in the Indian cave [22] dataset. We use the first 1 800 univariate samples, of which
1 700 are used for training, 50 for validation, and the last 50 for testing. We trained conventional RNN
models for 100 epochs and repeated this process for 10 times with random models’ initialization. The
optimal number of neurons was found through a grid search to be 30 for the trainable RNN baselines
and 50 for the ESN baselines. Grid search was also carried out to find the optimal leaking rate and
spectral radius scaling for ESN variants.

Since ESNs support one-shot learning through the linear regression, we have also tested cross-
validation (CV) on temporal data. Concretely, each fold consisted of 50 consecutive samples and
the hyper-parameters were chosen based on the mean validation error. For testing, ESN’s readout
weights were recomputed from the whole training sequence.

We have tested three variations of each RNN baseline: regular RNNs, where the model is not aware
of any time-irregularities, RNNs with ∆tn as an additional input, and a variation, where the RNNs
received interpolated training sequence as the input. In the interpolated variation (which we refer to
as “Interp.”), the whole training sequence was resampled into regular-time time series with linear
interpolation before feeding it in. Then, to evaluate this model, the predicted time series with regular
sampling, was again resampled with linear interpolation to match the irregular time points of the
original time series, and errors where computed.

Table 2: Results on the Speleothem dataset
Model Validation RMSE Test RMSE Test MAPE f(∆tn) Validation type

ESN 0.193 ± 0.005 0.185 ± 0.006 1.709 ± 0.057 – CV
Interp. ESN 0.183 ± 0.004 0.304 ± 0.005 2.917 ± 0.051 – CV

ESNT 0.201 ± 0.005 0.244 ± 0.001 2.340 ± 0.010 exp CV
TAESN 0.182 ± 0.004 0.346 ± 0.014 3.333 ± 0.150 linear CV
TAESN 0.199 ± 0.008 0.159 ± 0.002 1.478 ± 0.017 exp CV

ESN 0.117 ± 0.009 0.425 ± 0.064 4.311 ± 0.702 – standard
Interp. ESN 0.139 ± 0.022 0.346 ± 0.093 3.397 ± 0.998 – standard

ESNT 0.161 ± 0.036 0.348 ± 0.044 3.377 ± 0.456 linear standard
TAESN 0.120 ± 0.011 0.490 ± 0.021 4.952 ± 0.237 linear standard
TAESN 0.129 ± 0.008 0.408 ± 0.026 4.125 ± 0.296 exp standard

LSTM 0.160 ± 0.001 0.405 ± 0.009 3.999 ± 0.103 – standard
Interp. LSTM 0.157 ± 0.002 0.383 ± 0.010 3.738 ± 0.118 – standard

LSTMT 0.162 ± 0.001 0.403 ± 0.023 3.981 ± 0.267 linear standard
GRU 0.169 ± 0.010 0.351 ± 0.028 3.401 ± 0.304 – standard

Interp. GRU 0.171 ± 0.010 0.334 ± 0.022 3.206 ± 0.236 – standard
GRUT 0.164 ± 0.003 0.366 ± 0.017 3.559 ± 0.192 linear standard

TAGRU 0.187 ± 0.021 0.349 ± 0.053 3.389 ± 0.577 linear standard

From the results in Table 2 it can be seen that the cross-validation proved to be especially effective
for ESN-based methods, which were the only ones capable of it. This probably has something to do
with (the lack of) stationarity of the time series. Evidently, TAESN with exponential time function
displayed the best results among all the tested methods, including other cross-validated ones. Among
the standard-validated methods the interpolated GRU model yielded the best results on the testing set,
with the TAGRU, ESNT, and interpolated ESN giving similar results.

7



5 Discussion

Our analytically-derived models of time-adaptive RNNs (ESNs and GRUs) allow to deal with data
time irregularities directly with no learning or computational overhead by letting the RNN models
to “live” in the irregular time of the data and not vice versa. They tested with success in thorough
numerical simulations on two synthetic and two real-world datasets.

The same time-adaptive RNN idea is in principle applicable to other fully trained RNN architectures
like BPTT-trained [24] RNN or LSTM. But in this work, we preferred GRU over LSTM, because it
is simpler and closer to our other method, and ESN over fully BPTT-trained classical RNN, because
it is simpler and requires less training. Time-adapting other RNN models is a promising future work.

Our model also has some limitations:

• As mentioned, bigger time gaps are a problem. It is partially solved with nonlinear trans-
formation of ∆tn, but in some applications filling these big gaps in data by some typo of
inputation might be beneficial.

• Missing data in some inputs, but not all, is not handled by our model.
• ∆tn variations are potentially invisible to the model, but can in some cases have useful

information in themselves.

The time-discretization of the models could also potentially be done in a less crude way than the
linear Euler approximation used here.

Acknowledgments

This research was supported by the Research, Development and Innovation Fund of Kaunas University
of Technology (grant No. PP-91K/19).

References

[1] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou. Patient subtyping via time-
aware LSTM networks. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 65–74. ACM, 2017.

[2] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. Recurrent neural networks for
multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

[3] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, pages 6571–6583, 2018.

[4] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014.

[5] Y. G. Cinar, H. Mirisaee, P. Goswami, E. Gaussier, and A. Aït-Bachir. Period-aware content
attention RNNs for time series forecasting with missing values. Neurocomputing, 312:177–186,
2018.

[6] J. Futoma, S. Hariharan, and K. Heller. Learning to detect sepsis with a multitask Gaussian
process RNN classifier. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1174–1182. JMLR. org, 2017.

[7] J. Futoma, S. Hariharan, M. Sendak, N. Brajer, M. Clement, A. Bedoya, C. O’Brien, and
K. Heller. An improved multi-output Gaussian process RNN with real-time validation for early
sepsis detection. arXiv preprint arXiv:1708.05894, 2017.

[8] L. B. Godfrey and M. S. Gashler. Neural decomposition of time-series data for effective
generalization. IEEE transactions on neural networks and learning systems, 29(7):2973–2985,
2018.

[9] H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks. Tech-
nical Report GMD Report 148, German National Research Center for Information Technology,
2001.

8



[10] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting chaotic systems and saving energy
in wireless communication. Science, 304(5667):78–80, 2004.

[11] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. Optimization and applications of
echo state networks with leaky-integrator neurons. Neural Networks, 20(3):335–352, 2007.

[12] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel. Learning to diagnose with LSTM recurrent
neural networks. arXiv preprint arXiv:1511.03677, 2015.

[13] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uwave: Accelerometer-based personal-
ized gesture recognition and its applications. Pervasive and Mobile Computing, 5(6):657–675,
2009.

[14] E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Science, 20:130–141,
1963.

[15] M. Lukoševičius. A practical guide to applying echo state networks. In G. Montavon, G. B. Orr,
and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, 2nd Edition, volume 7700 of
LNCS, pages 659–686. Springer, 2012.

[16] M. Lukoševičius, D. Popovici, H. Jaeger, and U. Siewert. Time warping invariant echo state
networks. Technical Report No. 2, Jacobs University Bremen, May 2006.

[17] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science,
197(4300):287–289, 1977.

[18] M. C. Mozer, D. Kazakov, and R. V. Lindsey. Discrete event, continuous time RNNs. arXiv
preprint arXiv:1710.04110, 2017.

[19] D. Neil, M. Pfeiffer, and S.-C. Liu. Phased LSTM: Accelerating recurrent network training for
long or event-based sequences. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, pages 3889–3897, USA, 2016. Curran Associates
Inc.

[20] T. Pham, T. Tran, D. Q. Phung, and S. Venkatesh. Deepcare: A deep dynamic memory model
for predictive medicine. CoRR, abs/1602.00357, 2016.

[21] S. N. Shukla and B. Marlin. Interpolation-prediction networks for irregularly sampled time
series. In International Conference on Learning Representations, 2019.

[22] A. Sinha, G. Kathayat, H. Cheng, S. F. Breitenbach, M. Berkelhammer, M. Mudelsee, J. Biswas,
and R. L. Edwards. Trends and oscillations in the indian summer monsoon rainfall over the last
two millennia. Nature communications, 6:6309, 2015.

[23] C. Tallec and Y. Ollivier. Can recurrent neural networks warp time? arXiv preprint
arXiv:1804.11188, 2018.

[24] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

[25] Y. Zhu, H. Li, Y. Liao, B. Wang, Z. Guan, H. Liu, and D. Cai. What to do next: Modeling user
behaviors by time-LSTM. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pages 3602–3608, 2017.

9


	Introduction
	Related Work
	Methods
	Time-Adaptive Echo State Networks
	Time-Adaptive Gated Recurrent Units
	Nonlinear time scaling

	Experiments
	Synthetic chaotic attractor datasets
	UWave gesture dataset
	Speleothem dataset

	Discussion

