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Abstract. Everyone wants to write beautiful and correct text, yet the
lack of language skills, experience, or hasty typing can result in errors. By
employing the recent advances in transformer architectures, we construct
a grammatical error correction model for Lithuanian, the language rich
in archaic features. We compare subword and byte-level approaches and
share our best trained model, achieving F0.5 = 0.92, and accompanying
code, in an online open-source repository.
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1 Introduction

Recent advances in neural Natural Language Processing (NLP) have pushed the
frontiers. In particular, transformer-architecture-based models [25] surpassed hu-
man performance in various NLP benchmarks such as SQuAD2.0 [16], GLUE
[27], and SuperGLUE [26]. This also opened new opportunities for the Gram-
matical Error Correction (GEC) task which we address in this work.

GEC is the task of correcting different kinds of errors in text such as spelling,
punctuation, grammatical, and word choice errors. The abundance of such noise
in the text can hinder not only the understanding by humans but also the per-
formance of various downstream NLP systems. An error-free text is also more
beautiful, clean, associated with a certain prestige. However, producing it may
be problematic for non-native speakers, language learners, it requires additional
time and effort.

NLP state of the art for GEC still has much room to improve. As of now, the
best F0.5 scores are only up to 0.721. Moreover, the research is mostly focused on
English and a few other popular languages. To reduce this gap and contribute
to the GEC progress, in this work, we investigate it for the Lithuanian language.

The Lithuanian language is one of the oldest living languages in the world.
It has retained most of the features of the Indo-European Protolanguage, i.e.,
it is characterized by a very ancient linguistic structure: declensions (of nouns,
adjectives, and pronouns), short and long vowels, diphthongs, etc. Lithuanian
also has many similarities with Sanskrit – the classical language of ancient India,
1 http://nlpprogress.com/english/grammatical_error_correction.html
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still used today as a scholarly and liturgical language in Hinduism, Buddhism,
and Jainism. Antoine Meillet (1886-1936), one of the most influential French
linguists, once stated: “Anyone wishing to hear how Indo-Europeans spoke should
come and listen to a Lithuanian peasant”.

The Lithuanian language is synthetic and uses inflections to express syntac-
tic relationships within a sentence. In other words, the relations in a sentence
are expressed by word endings rather than with unbound morphemes and word
order. This allows a lot of freedom in composing sentences. In contrast to ag-
glutinative languages, which combine affixes by “gluing” them unchanged inside
word ending, in Lithuanian inflectional categories are “fused”. Meanwhile, pre-
fixes, suffixes, and infixes are still used to derive words. Lithuanian verbs can be
made from any onomatopoeia; phrasal verbs (e.g., go in, go out) are composed
by adding the prefix to the verb. Lithuanian is unique for having 13 different par-
ticipial forms of the verb [9] while modern English has only 2 (present and past
participles). It is estimated that 47% of Lithuanian word forms are morphologi-
cally ambiguous [17], i.e., requiring context consideration to discern the meaning.
All these mentioned features of the Lithuanian language make it interesting and
important to analyze in the context of automatic GEC.

Our contributions are:

– We present the first GEC system for Lithuanian language based on deep
neural networks.

– We compare sub-word and byte-level tokenization approaches for Lithuanian
grammatical error correction.

– We share all the technical details, code, and model weights for open reuse
and reproducibility.

2 Related Work

The simplest form of GEC is spellcheck. GNU Aspel2 and Hunspell3 are two
widely-used open source spellcheckers. In particular, Hunspell [5] is the only
system we found for Lithuanian GEC. Such systems work by keeping a large
dictionary of possible words and detecting the non-words. During detection, the
nearest alternatives from the dictionary are suggested. In Hunspell’s case, the
dictionary is made more compact by keeping only the main word forms with
transformation rules, prefixes and suffixes. Spellchek systems are compact but
limited to the correction of only non-words.

The first systems for a more complex GEC were based on Statistical Machine
Translation (SMT) using a noisy channel model [2]. A significant contribution
to GEC was the introduction of the CoNLL-2014 shared task [12]. Multiple
systems were proposed, and among them, the phrase-based SMT setup was the
most promising [8]. Yet neural approaches started to emerge, like [29]. As such
systems advanced, hybrid statistical (SMT) and Neural Machine Translation
2 http://aspell.net/
3 http://hunspell.github.io/
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(NMT) approaches [7] took the top. Only the introduction of the Transformer
model [24] enabled neural approaches to supersede the statistical ones. As of
now, the latter systems are claiming state-of-the-art results in GEC [13,18].

Novel less-supervised approaches are also emerging. A simple language model
reaching a reasonable performance with minimal annotated training data was
demonstrated in [3]. The proposed system used n-gram language model to score
variations of a sentence until incremental inflections do not improve the score
anymore. Such a system was again improved using transformer-based language
models instead of the n-grams in [1]. It turns out that such a less-supervised
approach can outperform fully-supervised systems that were claiming state-of-
the-art results several years ago.

Currently, the main constraint for GEC is the lack of training data. Re-
searchers make progress by including new data sources or using automatic gram-
matical error generation to synthesize them. A simple language-agnostic pre-
training objective was proposed in [18]. The authors automatically corrupted
sentences in character level: swapping, inserting, dropping spans; token level:
swapping, dropping spans; word level: lower-casing, upper-casing the first let-
ter. A bigger model and larger dataset allowed achieving state-of-the-art GEC
results for 4 languages. Authors of [19] used a small corpus of spelling errors to
derive statistics for typographical error generation and generate a large parallel
synthetic corpus. Another way is to use the data that the model incorrectly pre-
dicted during the training. A fluency boost learning and inference mechanism
was proposed in [6] that reuses less fluent model predictions as new inputs dur-
ing subsequent epochs. Similar trends are emerging with other languages. For
example, simply adding new data improved a Transformer GEC system for the
Czech language [11]. To summarize, it is important for neural GEC systems to
be trained on large and high-quality corpora.

3 Dataset

As mentioned, a large dataset is essential for training a neural GEC solution.
The data also has to be of the highest quality so that we can take it as a gold
standard of grammatically-correct text. The largest publicly available general-
purpose dataset for the Lithuanian language is from OSCAR [14] at 5GB of
deduplicated text. However, it is obtained from a general Common Crawl4 and
makes trusting the grammatical correctness problematic.

To make sure that the text is of good quality, we crawled various Lithuanian
websites ourselves. We manually checked how the text is structured in every
webpage so that only the relevant parts: title, summary (optionally), and the
main text paragraphs would be scrapped. We crawled the following types of web
pages: news, literature, blogs, encyclopedias, others.

We added titles and summaries to the main text paragraphs as additional
paragraphs. Finally, we split the data into paragraphs. As a result, a single
paragraph became a single sample of our dataset.
4 https://commoncrawl.org/
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3.1 Preprocessing

Although we performed a well-curated data scraping, there were still some arti-
facts in our data that had to be corrected or removed.

We had to remove some websites because of relatively high rates of spelling
errors. This left us with a total of 34 final websites.

Some common error patterns can be easily corrected automatically. We looked
at common mistakes in Lithuanian web texts [23] and performed the following
corrections:

1. Incorrect quotation marks. In Lithuanian, the correct are „ABC“. Meanwhile,
the English version “ABC” or others such as the universal "ABC" is often
used instead.

2. The lack of space. It can happen before “m.” and “d.” abbreviations. For
example, the text “1918m. vasario 16d.” must be corrected to “1918 m. vasario
16 d.”. Additionally, the space is often omitted after a full stop: “ir t.t.” and
“A.Sabonis” must be corrected to “ir t. t.” and “A. Sabonis”.

3. An unnecessary space. The space must be omitted before most punctuation
marks: “tik darbui , visiškai pamirštant poilsį ,” is corrected to “tik darbui,
visiškai pamirštant poilsį,”.

We also filtered the text samples based on some statistics:

1. The sample text length should be at least 20 characters.
2. The fraction of Lithuanian letters in a sample should be at least 0.98. This

filters out text from other languages and with miscellaneous characters. In
the end, we are solving a task for the Lithuanian language. We included the
characters “€₤$%wx” as Lithuanian since they are used quite often.

3. The fraction of spaces to non-spaces should be at most 0.02. This allowed
us to filter out samples dominated by URL addresses.

Lastly, we deduplicated our text samples. We shuffled the resulting 29 312 785
samples and took a subset of 4 194 304 for this work. Some statistics for the subset
are depicted in Table 1.

Table 1. Dataset sizes by various tokenizations. The total dataset size is 4 194 304
samples.

Tokenizer Sample length, Tokens, Tokenization example
mean ± std ×106

Characters 226 ± 194 947 Lietuva – graži šalis
ByT5 [30] 243 ± 194 1 017 Lietuva \xe2\x80\x93 gra\xc5\xbei \xc5\xa1alis
T5 [21] 48 ± 43 201 [_Lietuva] [_–] [_graži] [_šalis]
mT5 [31] 71 ± 61 298 [_] [Lietuva] [_–] [_] [graž] [i] [_šal] [is]
Words 30 ± 26 126 [Lietuva] [graži] [šalis]



Towards Lithuanian Grammatical Error Correction 5

The transformer model has a quadratic running time complexity O(n2) with
respect to the sequence length n (number of tokens). Usually, this is not a con-
straint as most text tasks are within the maximal sequence length of 512 (T5 [15])
sub-words or 1024 (ByT5 [30]) bytes. Yet in our training dataset, we had longer
examples that we did not wish to truncate and, hence, lose. Instead, we split
these too-long sequences to the length of 2100 characters for the T5 model and
700 characters for the ByT5. After that, we proceeded with the corresponding
tokenization. As a result, the exact numbers of samples and tokens differ for
both models, but the initial dataset and the amount of text (see Table 1) is the
same.

For both runs, we set aside 0.05% of the data for validation and another
0.05% for testing.

4 Methods

4.1 Generating Grammatical Errors

We induce 3 groups of synthetic grammatical errors described below.

Typographical Errors They are induced by modeling the way how humans
mistype on the keyboard. We follow the exact same methodology as in [22]: take
mistyping statistics between each pair of characters on a QWERTY keyboard
from an English dataset and apply them probabilistically to our texts. Out of the
all characters considered, this way we corrupted 2% of them; from which were:
substitution, 36.1%; deletion, 31.7%; insertion, 17.8%; transposition, 14.4%.

Confusing Similar Sounding Letters This is a very common source of
spelling mistakes. We model them by defining sets of characters that sound
alike, and randomly substituting a letter with one from the same set at a point
of the generated error. For this, we use weighted sampling. The probabilities of
the letters for substitution are proportional to how frequent they are in Lithua-
nian texts overall. For example, a in single set of letters “iįy” (where sounds differ
only in their length), it is way more common to mistakenly write “i” instead of
“ į”, rather than “į” instead of “i”, as “i” is much more common. Only 2% of all
such found occurrences were replaced. Groups of letters and detailed probabili-
ties for the group members are derived from the raw (no preprocessing) subset
of 2 909 403 samples, and are presented in Appendix A.

Other Errors We also introduce errors in the text by the four specific rules
described below. We, again, thus corrupt 2% of the matches of the rules.

1. Gemination are doubled consonant letters that sound like a single one and
thus is prone to be typed only once. This also applies to any consecutive
letters from “cčsšzž” group. For example, the words “pusseserė užsimerkė”
may be mistakenly written as “puseserė usimerkė” as they sound similar due
to the gemination.
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2. Assimilation to an adjacent letter. This is specific to any letter of “ptksš”
being before any of the “bdgzž” or vice versa. For example, the words “dirbti,
lipdavo” may be mistakenly written as “dirpti, libdavo” as this is how they
sound due to the assimilation.

3. Uppercasing or lowercasing the first letter in a word. For example, the word
“ąžuolas” can start both with the lower or upper case depending on whether
it is a tree (oak) or person’s name. We exclude the first words in a sentence
as these always have to start the upper case.

4. Delete and add space. We separately match all occurrences of spaces and all
empty strings not at a word boundary.

Some samples of the corrupted sentences are presented in Appendix B.

4.2 Transformer Models

In this work, we compare T5 [21] and ByT5 [30] transformer models for gram-
matical error correction of Lithuanian. They are of sequence-to-sequence type.
The encoder encodes the input sequence with attention operating on all input
tokens while the decoder predicts output sequence tokens one by one, attending
to tokens of both encoder (all) and decoder (only previous ones).

Below we further emphasize the properties of these models that make them
appropriate for our task.

T5 The original T5 [15] was designed to be universal for multiple tasks. Authors
showed that there is no difference whether a custom “head” is used (added on top
of the pre-trained transformer) for fine-tuning purposes or a simple sequence-
to-sequence formulation in text format is employed (no need to add additional
weights to a pre-trained model). This way even tasks with outputs as float num-
bers can be formatted into a text-to-text format. Such generic task formulation
made the T5 model very popular.

In previous work [21], we adapted the T5 model for the generation of sum-
maries of Lithuanian news articles. We trained a SentencePiece [10] tokenizer on
10

6 and the main model on 2 027 418 news articles. As a result, this model should
be familiar with the Lithuanian language (both tokenizer and model weights)
and we use it as the basis for our fine-tuning purposes.

ByT5 ByT5 is a follow-up model from the multilingual mT5 [31] and T5 [15].
The authors showed that adapting byte-level tokenization can lead to a much
more efficient use of model parameters. As an example, the multilingual mT5
had over 66% of its weights (for the base version) allocated to its multilingual
word pieces (a total of 250 000) related weights (input embedding matrix and
decoder softmax layer) which were only sparsely updating during the training.
Meanwhile, ByT5 vocabulary has only 384 items and the model reuses the saved
parameters in more massive layers rather than indexing tokens. These benefits
allowed ByT5 to surpass the small and the base versions of mT5 [30].
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The introduction of finer byte-level tokenization is especially important for
grammatical error correction. Typos, variants in spelling and capitalization, and
morphological changes can lead to completely different sub-word tokens, while
byte tokens are affected the least. The authors of ByT5 showed that their model
outperforms mT5 if various types of noise are introduced. Therefore, we use this
model in our study of Lithuanian grammatical error correction.

4.3 Training Details

To train the models, we used a GeForce RTX 2080 Ti GPU. Following the best
practices with the T5 family of models [15,18,30,31], we used the total batch size
(number of samples to pass through the model before the gradient update) of
128 for fine-tuning. For ByT5 it was achieved by 128 gradient accumulation steps
of batch size 1; while for T5, 64 gradient accumulation steps of batch size 2. We
had to use multiple accumulation steps to process the total batch sequentially by
smaller parts as the total batch did not fit into GPU memory at once. It took us
approximately 100 hours for ByT5 and 30 hours for T5 fine-tuning. ByT5 took
longer due to the longer sequences produced by finer byte-level tokenization.

We used the training script and Pytorch model implementation from the
Hugging Face library [28]. For simplicity, we employed an Adafactor optimizer
[20] with a constant learning rate of 0.001. If not stated otherwise, we used all
the default parameters as in the Hugging Face library version 4.12.0.

4.4 Evaluation

One of the most popular grammatical error correction evaluation metrics is ER-
RANT [4]. It applies a set of rules operating over a set of linguistic annotations
to construct the alignment and extract individual edits between corrupted, cor-
rected, and gold-standard texts. This way precision, recall, and F -score can be
calculated. We customized the original ERRANT by using Hunspell dictionar-
ies [5], stemmer5, spaCy version 3.2 pipeline lt_core_news_lg 6, and corre-
sponding part-of-speech tags for the Lithuanian language.

During the inference, we used simple greedy decoding with a beam size of 1.
That is, we simply selected for each next token the one that the model assigned
the highest probability to.

5 Results

Training dynamics of T5 and ByT5 models are depicted in Figure 1. Only after
6% of training, the ByT5 score F0.5 = 0.85 is already higher than the F0.5 = 0.80
T5 managed to reach after the full epoch. We can also see that the performance
is steadily increasing during the fine-tuning and is expected to continue doing
5 https://pypi.org/project/PyStemmer/
6 https://spacy.io/models/lt
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so. The same results are indicated by the training loss. It is much lower for the
ByT5, hence the model is better.

We divided our synthesized errors into several groups and corrupted the test
set with each group separately from the others. Evaluation results of such setup
are presented in Table 2. We can see that the easiest task for both models was
adding or deleting spaces, while the hardest task is correcting assimilation and
gemination mistakes. This group may lag in performance due to the smaller
abundance (2% of samples) in the training data.

We present some generated test samples in Appendix B.
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Fig. 1. Training loss and F0.5 score for both T5 and ByT5 runs.

Table 2. Evaluation for the separate error categories with models trained for one epoch.
We applied synthetic corruption for the test set of ByT5 (total of 2 155 samples) and
T5 (total of 2 099 samples) with each error group separately. We show both ERRANT
F0.5 score and number of samples (#samples) affected and evaluated on.

Error group
ByT5 T5

F0.5 #samples F0.5 #samples

Typographical 0.87 1 916 0.72 1 868
Punctuation 0.81 489 0.36 460
Similar sounding letters 0.88 1 115 0.55 1 143
Add/delete spaces 0.96 1 873 0.74 1 832
Assimilation/Gemination 0.79 56 0.30 43
Upper/Lower casing 0.86 785 0.47 781
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6 Discussion

We trained the first reported deep-learning-based Lithuanian grammatical error
correction system and compared two sequence-to-sequence transformer models
for the task.

The ByT5 transformer model, based on byte-level tokenization, greatly out-
performed the subword counterpart T5. We think that the main reason for this
is that the fine-grained byte-level details allow the model to maximize acquired
information about the sentence and thus calculate a more accurate representa-
tion. This way, the model sees a bigger picture and has to solve the task with
less ambiguity. On the other hand, longer and more informative token sequences
are slower to process and induce the slowdown of three times, compared to the
T5. Yet even if we compare models trained for the same amount of time, ByT5 is
still the leader. This shows that for the grammatical error correction it is crucial
to have the best possible representation of the text.

We thought that during the T5 subword tokenizer training acquired common
token patterns may be of great use. Yet our results show that this is not the
case. On the contrary, it may make it harder for the model to “understand” the
true representation behind the corrupted text.

In the future, we plan to train the ByT5 model even longer. It is clearly
visible from our results that in the current state it is under-trained. Additional
benefits could be expected from more data and more passes through the dataset.

We hope that this work will help both researchers and Lithuanian language
users. We make our trained model and code available at https://github.com/
LukasStankevicius/Towards-Lithuanian-Grammatical-Error-Correction.
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Jurgita Kapočiūtė-Dzikienė, for valuable discussions on related topics.

References

1. Alikaniotis, D., Raheja, V.: The unreasonable effectiveness of transformer lan-
guage models in grammatical error correction. In: Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building Educational Applications. pp.
127–133. Association for Computational Linguistics, Florence, Italy (Aug 2019).
https://doi.org/10.18653/v1/W19-4412, https://aclanthology.org/W19-4412

https://github.com/LukasStankevicius/Towards-Lithuanian-Grammatical-Error-Correction
https://github.com/LukasStankevicius/Towards-Lithuanian-Grammatical-Error-Correction
https://doi.org/10.18653/v1/W19-4412
https://aclanthology.org/W19-4412


10 L. Stankevičius and M. Lukoševičius.

2. Brockett, C., Dolan, W.B., Gamon, M.: Correcting ESL errors using phrasal
SMT techniques. In: Proceedings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of the Association for Com-
putational Linguistics. pp. 249–256. Association for Computational Linguistics,
Sydney, Australia (Jul 2006). https://doi.org/10.3115/1220175.1220207, https:
//aclanthology.org/P06-1032

3. Bryant, C., Briscoe, T.: Language model based grammatical error correction
without annotated training data. In: Proceedings of the Thirteenth Workshop
on Innovative Use of NLP for Building Educational Applications. pp. 247–253.
Association for Computational Linguistics, New Orleans, Louisiana (Jun 2018).
https://doi.org/10.18653/v1/W18-0529, https://aclanthology.org/W18-0529

4. Bryant, C., Felice, M., Briscoe, T.: Automatic annotation and evaluation of error
types for grammatical error correction. In: Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers).
pp. 793–805. Association for Computational Linguistics, Vancouver, Canada (Jul
2017). https://doi.org/10.18653/v1/P17-1074, https://aclanthology.org/P17-
1074

5. Dadurkevičius, V.: Assessment data of the dictionary of modern lithuanian ver-
sus joint corpora (2020), http://hdl.handle.net/20.500.11821/36, CLARIN-LT
digital library in the Republic of Lithuania

6. Ge, T., Wei, F., Zhou, M.: Reaching human-level performance in automatic gram-
matical error correction: An empirical study. arXiv preprint arXiv:1807.01270
(2018)

7. Grundkiewicz, R., Junczys-Dowmunt, M.: Near human-level performance in gram-
matical error correction with hybrid machine translation. In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 2 (Short Papers). pp.
284–290. Association for Computational Linguistics, New Orleans, Louisiana (Jun
2018). https://doi.org/10.18653/v1/N18-2046, https://aclanthology.org/N18-
2046

8. Junczys-Dowmunt, M., Grundkiewicz, R.: Phrase-based machine translation is
state-of-the-art for automatic grammatical error correction. In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing. pp.
1546–1556. Association for Computational Linguistics, Austin, Texas (Nov 2016).
https://doi.org/10.18653/v1/D16-1161, https://aclanthology.org/D16-1161

9. Klimas, A.: Some unique features of Lithuanian. Lituanus 30(3), 51–64 (1984)
10. Kudo, T., Richardson, J.: SentencePiece: A simple and language independent sub-

word tokenizer and detokenizer for neural text processing. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. pp. 66–71 (2018)

11. Náplava, J., Straka, M., Straková, J., Rosen, A.: Czech grammar error correction
with a large and diverse corpus. arXiv preprint arXiv:2201.05590 (2022)

12. Ng, H.T., Wu, S.M., Briscoe, T., Hadiwinoto, C., Susanto, R.H., Bryant, C.:
The CoNLL-2014 shared task on grammatical error correction. In: Proceedings of
the Eighteenth Conference on Computational Natural Language Learning: Shared
Task. pp. 1–14. Association for Computational Linguistics, Baltimore, Maryland
(Jun 2014). https://doi.org/10.3115/v1/W14-1701, https://aclanthology.org/
W14-1701

13. Omelianchuk, K., Atrasevych, V., Chernodub, A., Skurzhanskyi, O.: GECToR
– grammatical error correction: Tag, not rewrite. In: Proceedings of the Fif-

https://doi.org/10.3115/1220175.1220207
https://aclanthology.org/P06-1032
https://aclanthology.org/P06-1032
https://doi.org/10.18653/v1/W18-0529
https://aclanthology.org/W18-0529
https://doi.org/10.18653/v1/P17-1074
https://aclanthology.org/P17-1074
https://aclanthology.org/P17-1074
http://hdl.handle.net/20.500.11821/36
https://doi.org/10.18653/v1/N18-2046
https://aclanthology.org/N18-2046
https://aclanthology.org/N18-2046
https://doi.org/10.18653/v1/D16-1161
https://aclanthology.org/D16-1161
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W14-1701
https://aclanthology.org/W14-1701


Towards Lithuanian Grammatical Error Correction 11

teenth Workshop on Innovative Use of NLP for Building Educational Appli-
cations. pp. 163–170. Association for Computational Linguistics, Seattle, WA,
USA → Online (Jul 2020). https://doi.org/10.18653/v1/2020.bea-1.16, https:
//aclanthology.org/2020.bea-1.16

14. Ortiz Suárez, P.J., Sagot, B., Romary, L.: Asynchronous pipeline for processing
huge corpora on medium to low resource infrastructures. In: Bański, P., Bar-
baresi, A., Biber, H., Breiteneder, E., Clematide, S., Kupietz, M., Lüngen, H.,
Iliadi, C. (eds.) 7th Workshop on the Challenges in the Management of Large Cor-
pora (CMLC-7). Cardiff, United Kingdom (7 2019). https://doi.org/10.14618/IDS-
PUB-9021, https://hal.inria.fr/hal-02148693

15. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-
to-text transformer. Journal of Machine Learning Research 21(140), 1–67 (2020),
http://jmlr.org/papers/v21/20-074.html

16. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: Unanswerable
questions for SQuAD. In: Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers). pp. 784–
789. Association for Computational Linguistics, Melbourne, Australia (Jul 2018).
https://doi.org/10.18653/v1/P18-2124, https://aclanthology.org/P18-2124
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A Statistics for corrupting similar letters and
punctuation

Table 3. Regex expressions to find specific patterns in texts and statistics of distinct
finds used as probability weights for replacement.

Group (regular expression) Matches and counts

[,\.–]{0,1}␣ ␣ 79 695 056 .␣ 5 125 941
,␣ 9 876 726 –␣ 1 347 515

[\.,;:\–\-?!\(\)\[\]\<\>/] , 10 072 919 ? 300 962 ] 34 283
. 7 976 435 : 519 928 > 5 759
– 1 453 095 ! 106 333 < 4 457
) 665 253 ; 105 526
( 655 651 / 90 778
- 546 698 [ 34 295

u{0,1}ou{0,1} o 33 058 916 ou 41 509
uo 3 355 463 uou 34

ia|e ia 6 733 731 e 35 509 427
[scz] s 47 349 069 c 2 645 328 z 1 646 823
[ščž] š 7 002 598 č 2 619 317 ž 5 044 500
[eęė] e 35 509 427 ę 1 336 170 ė 9 781 460
[iįy] į 3 490 952 y 8 347 510 i 82 431 807
[uųū] ū 2 795 974 ų 7 826 828 u 28 978 236
[aą] a 68 291 558 ą 4 471 872
[cč] c 2 645 328 č 2 619 317
[zž] z 1 646 823 ž 5 044 500
[td] t 35 864 854 d 14 822 144
[kg] k 26 461 947 g 10 626 341
[pb] p 16 187 509 b 8 148 725

“|,,|[„“"”]|’’ " 436 378 ,, 11 777 ’’ 87
” 46 847 “ 817
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B Corruption and correction examples

Table 4. Samples of the original, corrupted, and corrected text forms. Here fully-
trained (1 epoch) ByT5 models were used.

Type Text

Original „Mes nenorime, kad jie keiktųsi, pyktųsi. Neleidžiame ne tik gerti, bet ir
rūkyti. Taisyklės čia griežtos, rūkei, atleisime tau kartą, nepaklusai, eik
iš kur atėjęs. Jei jau žmogus nusprendė keisti gyvenimą, tai turi būti
daroma rimtai“, - nuolaidų nežada M. Balčiūnas.

Corrupted "Mes nenorime, kad jie keiktųsi, byktųsi. Nleeidžiame ne tik gerti, bet ir
rūkyti. Taisyklės čia griežtos, Rūkei, atle isime tau kartą, nepaklusai, eik
iš kur atėjęs. Jei j au žmogus nuspr-endė keisti gyvenimą tai turi būti
daromo rymtai“, - nuolaidų nežada M. Balčiūnas]

ByT5 „Mes nenorime, kad jie keiktųsi, pyktųsi. Neleidžiame ne tik gerti, bet ir
rūkyti. Taisyklės čia griežtos. Rūkei, atleisime tau kartą, nepaklusni, eik
iš kur atėjęs. Jei jau žmogus nusprendė keisti gyvenimą, tai turi būti
daroma rimtai“, - nuolaidų nežada M. Balčiūnas.

Original Šeštadienio vakarą Klaipėdoje surengto „Eurovizijos“ atrankos finalo
dalyviai po renginio miegoti nėjo – dešimt savaičių trukusios kovos
pabaigą atšventė uostamiesčio kokteilių bare „Oscar“.

Corrupted Šeštdienio vakarą Klaipėdoje surengto „Eurovizijos“ atrankos finalo
dalyvia i po rengicio miegoti nėjo – dešimt savaičių drukusio kovos
pabaigą atšventė uostamiesčio kokteilių bare „oscar“.

ByT5 Šeštadienio vakarą Klaipėdoje surengto „Eurovizijos“ atrankos finalo
dalyviai po renginio miegotinėjo – dešimt savaičių trukusio kovos
pabaigą atšventė uostamiesčio kokteilių bare „Roscar“.

Original 300 kg hašišo gabenimo į Lietuvą byla: vienas išteisintas, kitam
sušvelninta bausmė

Corrupted 300 kg haši šo gabenimo į Lietuvą byla. vie nas i štsisintas, kitam
sušverlninta buasmė

T5 300 kg hašišo gabenimo į Lietuvą byla: vienas išteisintas, kitam
sušvelninta bausmė
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