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Abstract. We address a classical fetal QRS detection problem from abdominal ECG

recordings with a data-driven statistical machine learning approach. Our goal is to

have a powerful yet conceptually clean solution. There are two novel key components

at the heart of our approach: an echo state recurrent neural network that is trained

to indicate fetal QRS complexes, and several increasingly sophisticated versions of

statistics-based dynamic programming algorithms, that are derived from and rooted

in probability theory. We also employ a standard techniques for preprocessing and

removing maternal ECG complexes to the signals, but do not take this as the main

focus of this work. The proposed approach is quite generic and can be extended to

other type of signals and annotations. Open source code is provided.
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1. Introduction

Monitoring of fetal ECG (f ECG) and its parameters would provide important

information about the fetal heart status and various distress factors. The problem,

however, is difficult. Noninvasive f ECG has low signal-to-noise ratio, is contaminated

by the strong interferences: maternal ECG (mECG), fetal brain activity, myographic

signals, movement artifacts. Forty years of research provided little to clinically

significant advances in prenatal fetal ECG monitoring, see (Sameni & Clifford 2010)

and the editorial in this issue (Clifford, Silva, Behar & Moody 2014) for good reviews of

many existing approaches to f ECG extraction and fetal heart rate (f HR) estimation.

PhysioNet portal with its Challenge’2013 (Silva, Behar, Sameni, Zhu, Oster, Clifford

& Moody 2013) took initiative to inspire researchers to turn to this old problem again

with new methods and tools and try to move the field forward.
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Matched (Farvet 1968) and adaptive filtering (Widrow, Glover, McCool, Kaunitz,

Williams, Hearn, Zeidler, Eugene Dong & Goodlin 1975) were the first digital signal

processing methods applied to the problem of f ECG estimation and fetal heart rate

extraction. Now three main classes of approaches are used to solve the problems of f ECG

estimation and fetal heart rate extraction: adaptive filtering, blind source separation,

and ad-hoc (hand-crafted) mixture of various methods. All of them have advantages

and disadvantages. The main disadvantage of adaptive filtering is the requirement for

two kinds of signals: abdominal signal with mixture of fetal and mother ECGs and

an ECG signal from mother’s chest. The blind source separation methods (principal

component analysis (Kanjilal, Palit & Saha 1997) and independent component analysis

(Lathauwer, Moor, Vandewalle, Spain, Lathauwer, Callaerts & Moor 1994)) relay on

the assumption that signal sources – f ECG, mECG, and noise – are mixed with a linear

stationary mixing matrix. If this assumption is violated, the source separation results

are not adequate. They also require additional mechanisms to ensure that correct signals

are taken among the blindly separated.

The authors of the summary of Physionet challenge “Noninvasive Fetal ECG: the

PhysioNet/Computing in Cardiology Challenge 2013” (Silva et al. 2013) conclude that

most of successful f ECG detection solutions made use of fusion of several approaches

e.g. (Behar, Oster & Clifford 2013) proposed and successfully used the algorithm (FUSE

method) which selects the best among 4 different channels for source separation. Each

channel itself is based on template subtraction, blind source separation (ICA) or their

combinations.

The most successful participants of the Challenge (Andreotti, Riedl, Himmelsbach,

Wedekind, Zaunseder, Wessel & Malberg 2013) also took the strategy of complex

branching of the algorithm and combining many signal processing approaches: ICA

for maternal signal enhancement, matched filter detector, extended Kalman smoother,

template adaptation, statistical decision making. Although showing good results, later

algorithms are very ad-hoc, dedicated to this particular problem of fetal heart rate

estimation from particular set of signals.

We propose here a new approach for fetal QRS (f QRS) detection and heart

rate estimation based on supervised machine learning. It employs two innovative key

components: (i) an “echo state” recurrent artificial neural network (ESN) is trained to

recognize f QRS, and (ii) several options of dynamic programming (DP) approaches are

used to fuse information coming from sensors with estimated statistics of f QRS to find

the most likely sequence of f QRS timings. The preliminary results of this work were

presented in a shorter conference publication (Lukoševičius & Marozas 2013).

Artificial neural networks (ANNs) are powerful tools which were also used for

the problem of fetal ECG extraction before, but mostly in the setting of adaptive

filtering. One study (Camps-Valls, Martinez-Sober, Soria-Olivas, Magdalena-Benedito,

Calpe-Maravilla & Guerrero-Martinez 2004) has found that nonlinear FIR based neural

network adaptive filter clearly outperformed linear LMS based algorithm. ESN as an

adaptive filter for ECG processing was introduced in (Petrėnas, Marozas, S ornmo
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& Lukoševičius 2012) for QRST cancellation during atrial fibrillation. Recent study

(Behar, Johnson, Clifford & Oster 2014) compared several types of linear adaptive

filters (LMS, RLS) with nonlinear based on ESN for the f ECG extraction task. This

time, the nonlinear ESN based adaptive filter showed only slightly superior performance

with respect to the LMS, RLS and template subtraction methods.

Our approach, in contrast, does not require a reference mECG lead and there is

no adaptive filtering involved: the ESN is only trained once on a provided annotated

data as an example and then is used fixed. To the best of our knowledge there is also

no previous approach to use a probabilistic interpretation and dynamic programming

to maximize the likelihood of the detected QRS annotations the way we do it.

Figure 1 outlines the components and signal flow of our approach. Apart from

repairing, filtering, and normalizing the data discussed in Section 2.2, our method

consists of three major steps: canceling the mECG from the signals discussed in

Section 2.3, an echo state neural network discussed in Section 3.1 producing an indicator

signal, and probabilistic dynamic programming algorithms detecting fetal R waves in it

discussed in Section 3.2, elaborating more on the latter.
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Figure 1. The block diagram of our approach. Here the bold arrows denote the

four-lead ECG signals, and dotted lines denote signals that are not present for every

time step (for abbreviations see the text below).

2. Signal preprocessing and mECG removal

2.1. Dataset

PhysioNet (Silva et al. 2013) provided a collection of one-minute f QRS recordings.

Each recording contains four noninvasive abdominal leads. Mother chest leads were

not provided. Though sampling frequency is the same 1000 Hz for all recordings,

the instrumentation varied and had differing frequency response, resolution, and

configuration. The data have been divided into three datasets. Dataset A (75 records)

was a training set which included noninvasive f ECG signals, as well as reference

annotations marking the locations of each f QRS complex. Dataset B (100 records)

included noninvasive f ECG signals only and was used for evaluation of the Challenge

entries by the organizers. The last Dataset C was reserved for evaluation of open-

source Challenge entries and remained secret. The Challenge was to produce a set

of annotations (f QRS complex locations) that matches the non-disclosed references as

nearly as possible. f QRS complex locations are annotated by marking the R waves.
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2.2. Data preprocessing

Our preprocessing first repairs the irregularities of the provided data, such as values

dropping beyond the range of analog-digital converter or large initial transients (see

(Lukoševičius & Marozas 2013) for more details). We then filter the signal using a

bandpass filter leaving only the frequencies between 3 and 48 Hz. The resulting signal is

then normalized to have zero mean and unit standard deviation. All the preprocessing

discussed above is applied to every of the four leads of the ECG signal where both

maternal and fetal ECGs are present.

2.3. Maternal ECG removal

The mECG removal is inspired by (Martens, Rabotti, Mischi & Sluijter 2007). The

implementation provided by the Challenge organizers was taken and improved upon in

several respects. As depicted in Figure 1, the mECG removal in turn consists of several

steps.

First the mECG complexes are detected on one of the four leads. We observe that

the lead where mECG is most pronounced, typically has the most asymmetric signal

value distribution around the zero mean. For this, in every lead we compute the third

statistical moment, called skewness, of the signal values, which has been used before,

e.g., in (Behar, Oster, Li & Clifford 2013). The lead with maximal absolute skewness is

selected for mQRS detection. In the process, all the leads are made to have a positive

skewness, flipping the sign of the signal if necessary. This is a heuristic with a goal to

make all mECG R peaks point upwards and thus to some extent give a common format

to the differently recorded signals.

The maternal R peaks are detected by finding maximal values within reasonable

intervals of maternal R-R durations, as explained in more detail in Section 3.2.2.

The mean mECG cycle is computed by aligning all the mECG cycles by the

detected R points and averaging them in all the four leads separately. The mean mECG

is then subtracted around every R wave from the original signal. The subtraction is done

following (Martens et al. 2007): the mean ECG cycle is divided into three parts that

roughly correspond to the P wave, the QRS complex, and the T wave; and for every of

the three parts an optimal scaling is determined before the subtraction. Each optimal

scaling is found by minimizing the square distance between the real signal at the interval

of removal and the scaled averaged fragment which is to be removed. In addition to

accuracy, this scaling greatly improves robustness of the maternal ECG cancellation

procedure: false maternal R peak detections result in low scaling coefficients and do not

disrupt the signals much.

The remaining signal is filtered again with a bandpass filter leaving only the

frequencies between 9.5 and 48 Hz. These values were found through parameter tuning

explained in Section 3.3, and the lower bound 9.5 Hz appears to be a compromise between

removing enough of remaining mECG residues, and leaving enough of f ECG for an

effective f QRS detection. This value might be smaller with a better mECG removal.
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Upon visual inspection, this approach to canceling maternal ECG worked

reasonably well, even though not perfectly in most of the signals. As a downside, it

left visible mECG residues when there was a bigger variation in mECG shape during

the signal. We did not invest the largest effort in perfecting the mECG removal,

but concentrated on the techniques after the removal, constituting the main original

contributions of this work.

3. Fetal QRS detection

We approach the fetal QRS, or more precisely fetal R (f R), detection in the preprocessed

signal as a supervised machine learning task. The procedure consists of two stages. The

first stage, detailed in Section 3.1, is an artificial recurrent neural network of the type

Echo State Network (ESN) (Jaeger 2001, Jaeger 2007, Lukoševičius & Jaeger 2009). It

gets the preprocessed signals with mECG canceled as its input, and is trained to produce

a signal that indicates the f R peaks. The target signal for the training is produced from

the provided Dataset A annotations. The second stage, detailed in Section 3.2, takes

the non-perfect continuous f R indicator signal from the trained ESN and interprets

it in a probabilistic fashion to produce the discrete f R annotations, making use of

the statistics observed in the f R annotations provided in Dataset A. We discuss and

test several alternatives for the second stage. Then, in Section 3.3 we discuss how we

validated our approach and tuned its parameters.

3.1. Echo State Network

We use an Echo State Network (ESN) (Jaeger 2001, Jaeger 2007, Lukoševičius &

Jaeger 2009) which is an artificial recurrent neural network with an update equation

x̃(t) = tanh
(
Win[1; u(t)] + Wx(t− 1)

)
, (1)

x(t) = (1− α)x(t− 1) + αx̃(t), (2)

where x(t) ∈ RNx is a vector of ESN “reservoir” neuron activations and x̃(t) ∈ RNx is its

update, u(t) ∈ RNu is the input signal, all at discrete time t, sampled at 1 kHz, tanh(·)
is a hyperbolic tangent neuron activation function applied element-wise, [·; ·] stands for

a vertical vector concatenation, Win ∈ RNx×(1+Nu) and W ∈ RNx×Nx are the input and

recurrent weight matrices respectively, and α is the leaking rate of the network update.

This is a rather standard ESN configuration motivated in (Lukoševičius 2012). In this

task u(t) is the preprocessed and mECG-removed signal with Nu = 4, and t is running

from 1 to T = 60 000 ms. The weight matrices Win and W are generated randomly

according to some simple rules and parameters (Lukoševičius 2012) described in Section

3.3.

The readout from the ESN is

y(t) = Wout[1; u(t); x(t)], (3)
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where y(t) ∈ RNy is the network output, Wout ∈ RNy×(1+Nu+Nx) the output weight

matrix, and [·; ·; ·] again stands for a vertical vector concatenation. In this task

y(t) = y(t) is the f R indicator signal with Ny = 1.

Wout is trained using linear regression (Lukoševičius 2012), which is standard in

ESNs, on the Dataset A to produce the f R indicator signal y(t). The target signal

ytarget(t) for this supervised learning was a zero signal spiking to one at f R peaks

marked by the provided correct annotations. The training is performed in a single

batch and produces Wout that are optimal in the sense of quadratic error between y(t)

and ytarget(t). After training Wout remain fixed.

The ESN can be seen as a big (Nx being in order of hundreds or thousands) nonlinear

expansion with memory x(n) (1)(2) of the input signals u(t) followed by an optimal

linear combination (3) to produce the output signal y(t) as close to the target ytarget(t)

as possible.

3.2. Probabilistic interpretation of the indicator signals

The final component in our architecture is responsible for interpreting the f R indicator

signal y(t) to produce discrete f R annotations {t1, t2, . . . , tm} where m is not fixed.

Because the data is noisy and varied, the indicator signals y(t) produced by the

ESN after training are not perfect and quite differ from the corresponding desired clean

ytarget(t). Still, on average y(t) is hopefully higher at time points t corresponding to f R

peaks.

To deal with this imprecision and be able to combine it with other sources of

information using a probabilistic framework, we interpret the signal y(t) as an indication

of the probability P (t|u) that there is an f R peak event at a time step t, given data u.

We must keep in mind, however, that y(t) is not exactly trained to be the probability

and especially the scaling of y(t) can be way off, thus it should only be used as a

comparative, but not an absolute value. We thus denote P (t|u) = f(y(t)), where f(·)
is a monotonic function, details of which we will discuss in Section 3.3. We trimmed

negative values of y(t) as a practical means to ensure non-negativity. Note also, that

a probability of an event at a certain time step t is related to a probability density

function over time by a constant dt which in our case is 1 ms.

In this probabilistic framework we want to find a sequence of f R annotations

{t1, t2, . . . , tm} that maximizes the probability of f R peak events occurring at those

time instances, given the (evidence) data u:

{t1, t2, . . . , tm} = arg max
{t′1,t′2,...,t′m}

P (t′1, t
′
2, . . . , t

′
m|u)

1
m , (4)

where {t′·} are candidate annotations bound by arg max. Since the number of events m

is not fixed here and the probabilities involved are typically < 1, the normalization by

1/m is introduced in (4) to remove a bias toward smaller m.

In the following subsections we will present increasingly advanced algorithms for

combining the available information in producing the f R annotations.
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3.2.1. Direct interpretation. The most straightforward approach of annotation is

setting a threshold yth and annotating every ti with an f R event where y(ti) > yth. This

would work but only for very clean signals, and setting of yth would be problematic.

A probabilistic interpretation of this approach would be based on an assumption

that f R events at time instances ti are statistically independent between each other,

and thus

P (t1, t2, . . . , tm|u) =
m∏
i=1

P (ti|u) =
m∏
i=1

f(y(ti)). (5)

Such approach would pick annotations {ti} with highest y(ti) (> yth) that maximizes∏m
i=1 y(ti).

However, as in speech recognition, we can employ our knowledge of higher level

statistics to improve the interpretation of information coming from lower level noisy

sound signal by providing expectations and context to it. In speech recognition these

higher level statistics would be context-specific dictionaries, probabilistic grammars, etc.

In our task this would be the available statistics of f R events. The idea is sketched in

Figure 2 right.

3.2.2. Employing R-R interval statistics. The direct method treats f R events at ti−1

and ti as statistically independent. However, we know that fetal R-R (f RR) interval

durations (ti−ti−1) typically lie in certain ranges. A more intelligent and widely popular

approach is to set a permissible interval τRR for the R-R values and find the next

annotation at maximum inside the permissible interval:

ti = arg max
t′i∈(ti−1+τRR)

P (t′i|u) = arg max
t′i∈(ti−1+τRR)

y(t′i). (6)

This approach aims at maximizing (5) with this additional hard constraint between

every subsequent ti−1 and ti.

This method worked better. This is in fact how our mQRS detection mentioned in

Section 2.3 was implemented, except detecting maximum on one of the leads of the the

raw signal u(n) instead of the trained indicator y(t).

We can, however, make better use of the f RR statistics. We compute a histogram

of f RR durations from the Dataset A annotations and, after removing some outliers,

we model their distribution as a Gaussian N
(
µf RR, σ

2
f RR

)
with estimated parameters

µf RR = 424 ms and σf RR = 40 ms (Figure 2 top left). We thus estimate the probability

of f RR duration being (ti − ti−1), instead of setting a hard interval, which is also the

probability that f R occurs at ti, given that it occurred at ti−1: P (f RR = ti − ti−1) =

Pf RR(ti − ti−1) = P (ti|ti−1).

Under this assumption that probability of every ti is dependent not only on the
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Figure 2. Left: f RR and f ∆RR histograms and fitted Gaussian distribution

models. Right: a sketch on how f RR event statistics are employed to refine f R

event recognition. a) The filtered raw signal. b) The signal with mECG (imperfectly)

removed. c) The indicator signal and its interpretation employing f RR statistics. Only

one of four leads is shown in a) and b) for visual clarity.

input u, but also on ti−1,

P (t1, t2, . . . , tm|u) =
m∏
i=1

P (ti|ti−1,u). (7)

Assuming that ti−1 is already decided for and no longer depends on u (a “Markov

blanket”), and applying Bayes’ rule, we get

P (ti|ti−1,u) =
1

P̄t
P (ti|ti−1)P (ti|u), (8)

where P (ti) = P̄t is a constant average probability of f R occurring at any ti.

Putting (4), (7), and (8) together, in this case we have to maximize(
m∏
i=1

P (ti|ti−1)P (ti|u)

) 1
m

=

(
m∏
i=1

P (ti|ti−1) f(y(ti))

) 1
m

(9)

A simple dynamic algorithm to do this is to select next ti as

ti = arg max
t′i∈(ti−1+τRR)

(
P (t′i|ti−1)y(t′i)

)
(10)

with the interval τRR corresponding to the range where P (t′i|ti−1) is high enough to

consider. The algorithm is really fast, it has time complexityO(T ), just like (6), where T

is the length of the signal. It is, however, imprecise, since it greedily chooses annotations

with high probability even if they later lead to annotations with low probability.

To enable us working with potentially infinite sequences, and to simplify

computations, let us switch from the global geometric average presented in (4) to a

local in time exponential geometric moving average, and redefine (9) in an iterative

form

P (. . . , ti−1, ti|u) = P (. . . , ti−2, ti−1|u)1−γ (P (ti|ti−1)P (ti|u)
)γ
, (11)
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where γ < 1 is an exponential decay factor.

Let pmax(t) be the maximal probability of a sequence of annotations leading up to,

and including t as the last annotation in the sequence:

pmax(t) = max
{...,t′i−2,t

′
i−1}

P
(
. . . , t′i−2, t

′
i−1, t|u

)
. (12)

pmax(t) can also be computed iteratively:

pmax(t) = max
t′i−1∈(t−τRR)

(
pmax(t′i−1)1−γP

(
t|t′i−1

)γ )
P (t|u)γ. (13)

This way for a finite signal we can obtain pmax(t) for every t, going forward in time,

find a good candidate for tm, giving a high pmax(tm) at the end of the signal, and retrace

the sequence tm, tm−1, . . . , t1 that produced it, going backward in time – thus obtaining

the annotation sequence that maximizes (11).

Note that we only need to consider an interval (t− τRR) for t′i−1 in (13) where the

Gaussian P (t|t′i−1) is sufficiently large, i.e., a reasonable interval for an f RR durations.

Time complexity of this algorithm is O(T · |τRR|), where T is the length of the signal

and |τRR| is the range of possible f RR durations.

3.2.3. Employing R-R interval variation statistics. The methods above treated

durations of neighboring f RR intervals as statistically independent. However, we know

that this is not the case. We compute a histogram of changes f ∆RR between durations

of all two subsequent f RR intervals, and see that (excluding several outliers) it roughly

follows a Gaussian distribution N
(
0, σ2

f ∆RR

)
with estimated σf ∆RR = 13 ms (Figure 2

bottom left). This is a much narrower distribution than that of f RR. Thus modeled

probability that a change in f RR duration will be
(
(ti − ti−1) − (ti−1 − ti−2)

)
=

(ti − 2ti−1 + ti−2) is taken as the probability of f R at ti, given f R at ti−1 and ti−2:

P (f ∆RR = ti − 2ti−1 + ti−2) = P (ti|ti−1, ti−2).

Under this assumption that probability of every ti is dependent not only on the

input u, but also on ti−1 and ti−2,

P (t1, t2, . . . , tm|u) =
m∏
i=1

P (ti|ti−1, ti−2,u). (14)

Assuming that ti−1 and ti−2 are already decided for and no longer depend on u (a

“Markov blanket”), and applying Bayes’ rule and the result from (8), we get

P (ti|ti−1, ti−2,u) =
1

P̄t
P (ti|ti−1, ti−2)P (ti|u), (15)

where P (ti) is a constant average probability of f R occurring at any ti.

Getting back to the geometric moving average and an iterative form,

P (. . . , ti−1, ti|u) = P (. . . , ti−2, ti−1|u)1−γ (P (ti|ti−1, ti−2)P (ti|u)
)γ
, (16)
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where γ < 1 is an exponential decay factor.

Let pmax(t, t−) be the maximal probability of a sequence of annotations leading up

to, and including t− and t as the last two annotations in the sequence

pmax(t, t−) = max
{...,t′i−3,t

′
i−2}

P
(
. . . , t′i−3, t

′
i−2, t−, t|u

)
. (17)

pmax(t, t−) can also be computed iteratively:

pmax(t, t−) = max
t′i−2∈(2t−−t−τ∆RR)

(
pmax(t−, t

′
i−2)1−γP

(
t|t−, t′i−2

)γ )
P (t|u)γ. (18)

This way, for a finite signal we compute all pmax(t, t−) in the forward direction for

every t ∈ (0, T ] and t− ∈ (t− τRR), saving arg max t′i−2 from (18) for every pair (t, t−).

We take tm = arg maxt maxt− pmax(t, t−) at the end of the signal and trace back the

sequence tm, tm−1, . . . , t1 that produced it, to get the f R annotations. The interval τ∆RR

in (18) is centered around 0 where P (t|t−1, t−2) has high enough values.

Time complexity of this algorithm is O(T · |τRR| · |τ∆RR|), where T is the length

of the signal and |τRR| is the range of possible f RR durations and |τ∆RR| is the range

of possible f ∆RR variations. Space complexity is O(T · |τRR|) to store pmax(t, t−) and

t′i−2’s for back-tracking.

3.2.4. Employing both statistics. By the way we have defined P (ti|ti−1, ti−2) in Section

3.2.3, we assume that f RR durations change following a random walk process of

Brownian motion. In this definition there is no restriction to possible f RR durations or

bias toward more probable f RR values, like P (ti|ti−1) of Section 3.2.2. In practice f RR

durations are restricted by τRR in (18), but can still take improbable values within it.

To introduce the bias P (ti|ti−1) back, we can combine the two algorithms (13) and (18)

into

pmax(t, t−) = max
t′i−2∈(2t−−t−τ∆RR)

(
pmax(t−, t

′
i−2)1−γP

(
t|t−, t′i−2

)λγ )
P (t|u)γP (t|t−)κγ (19)

with appropriate powers λ and κ that can be tuned empirically to balance the two

biases. The algorithm essentially retains the same properties as (18) and falls back to

it in case κ = 0.

An even more principled approach would be to model P (ti−1 − ti−2, ti − ti−1) as a

joint two-dimensional Gaussian distribution and compute P (ti|ti−1, ti−2) as a conditional

probability from it, which we leave as a future work.

3.3. Parameter tuning and validation

We used 15-fold cross-validation on the 75 Dataset A annotated signals with an error

function that measures mean square distance between individual f R annotations similar

to Events 2 and 5 of the Challenge to test the many design options and parameters in
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all the components of our solution. ESNs enable us to do this massive cross-validation

with minimal overhead (Lukoševičius 2012). Our solution was implemented in Matlab.

Parameters for data prerocessing and mECG removal are discussed in Section 2.

We have tried different parameter settings with our ESN networks (2)(3) following

practices described in (Lukoševičius 2012). We used ESN reservoirs of size Nx = 1000

or 500, leaking rate α = 0.9, spectral radius of the reservoir connections ρ(W) = 0.9 or

0.94, Win scaling of 0.1 or 0.08. In some of our solutions we used several (up to five)

ESNs by training and running them in parallel, then averaging their outputs y(t).

We used the indicator signals y(t) produced by the cross-validation (by the ESNs

that are not directly trained on these signals) to tune our probabilistic algorithms, the

latter are however not truly cross-validated, since the parameters are set directly by

hand and are not meta-parameters for learning.

We refined our theoretically derived algorithms of Section 3.2 with power coefficients

similar to the ones in (19) that allowed for balancing the influence of the three sources

of probabilities: P (t|u) = f(y(t)), P (ti|ti−1), and P (ti|ti−1, ti−2). The parameters were

coarsely hand-tuned to empirically improve performance. For the Gaussian distributions

they are equivalent to changing their standard deviations away from the estimated ones.

Two parameters like in (19) are enough to balance three probabilities, because

power is a monotonous operation and thus maximum is invariant to it. This way the

power coefficient next to P (t|u) would be redundant: its relative strength depends on the

other two, and the absolute power scaling does not matter. Also, notice that a correct

absolute scaling of the probabilities involved in all our algorithms is not necessary. We

take P (t|u) = f(y(t)) = a y(t)b, where a and b are some scalar coefficients, and can

reduce it to P (t|u) = y(t) without loss of generality, because a does not matter and b is

empirically optimized for when tuning κ and λ in (19).

4. Results

We have tested many modifications of our solution, especially different options and

parameters of the probabilistic DP algorithms described in Section 3.2. Since the number

of solutions that Challenge organizers would accept to test on the hidden testing data

was very limited, we did most of the scoring internally on the available training Dataset

A, using cross-validation when possible as described in Section 3.3.

Internal (A75) and official scores (where available) for our different probabilistic

DP algorithms are presented in Table 1. As mentioned, A75 scores are similar to and

correlate with Event 5, but has a much bigger scaling as it sums squared distances in

milliseconds.

The best official Challenge scores are with a mention of the place they have ranked

in the Challenge. Event 4 is a mean squared error (MSE) scored in the domain of fetal

heart rate (f HR) obtained from the annotations, and Event 5 is root MSE in raw f RR

interval durations between the produced and the correct annotations of Dataset B (Silva
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Table 1. Internal (A75) and challenge error scores with different algorithms.

Algorithm A75 Event 4 Event 5

f RR flat greedy (6) 523338

f RR Gauss greedy (10) 618214 66.327 (7th) 11.027

f RR flat DP (13) 400900

f RR Gauss DP (13) 397777

f ∆RR Gauss DP (18) 183113 254.143 8.675

f ∆RR +f RR Gauss DP (19) 178585 147.236 8.239 (5th)

et al. 2013), similar to our internal A75.

The algorithm “f RR flat DP” in Table 1 is a version of dynamic programming

algorithm (13), where P (ti|ti−1) is uniform (flat) within an admissible interval τRR.

All the A75 scores in Table 1 are produced from the same y(t) signals, coming

from an ESN of size Nx = 500, for a better comparison (but not top performance).

The results of the Challenge Events 4 and 5, on the other hand, do not reflect the

difference of performance of the different algorithms precisely, because striving for

the best performance and having limited tries to obtain official scores, some of the

parameters and details vary among the submissions. They are thus also not directly

comparable to A75 of the corresponding algorithms, even though A75 are produced with

the algorithms that were made to resemble the submitted ones.

An observation can be made that algorithms taking into account f RR statistics are

less likely to wonder into improbable f HR values and thus have better Event 4 scores,

while those using f ∆RR statistics tend to track every f R more precisely (when at all)

and thus perform better in the f RR domain: A75 and Event 5.

The approach A75 which we chose to internally measure performance highly favors

the latter. We can observe in Table 1 that using Gaussian P (ti|ti−1) distributions

instead of flat ones within permissible values, does little to improve the A75 score, and

sometimes is even detrimental, except in the best final solution. Indeed, when tuning

power coefficient κ next to P (ti|ti−1), the best A75 scores where often obtained close

to when κ → 0 and thus the distribution approaches uniform. This may be related to

the fact that f RR durations in the signals are highly correlated and multiplying the

P (ti|ti−1) many times assigns a too low probability to an atypical f HR.

On the other hand, Event 4 scores are highly boosted by taking the P (ti|ti−1)

bias into consideration. It is revealed that due to specifics of the scoring system of the

Challenge, a trivial solution with uniformly constantly placed f R annotations producing

a mean f HR scores quite high (Behar, Oster & Clifford 2013). Thus P (ti|ti−1) bias might

be even more important for difficult unseen data to score high. For practical purposes,

however, such high scores could be deceptive and the use of the f RR and f ∆RR statistics

should balance the correctness of annotations with their temporal smoothness.

Table 2 represents some additional results, changing other parts of our architecture

with the best performing algorithm from Table 1. This gives a better understanding on
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what factors contribute to the good performance most.

Table 2. Effects of different types of preprocessing of data.

Algorithm A75

Nx = 100 ESN, mECG cancellation 237953

Nx = 500 ESN, mECG cancellation 178585

Nx = 1000 ESN, mECG cancellation 184990

Nx = 500 ESN, no mECG cancellation 709196

Nx = 1000 ESN, no mECG cancellation 636630

We can see that using a significantly smaller ESN reservoir is less detrimental to the

performance than using a less powerful DP algorithm (Table 1). It is unusual in this case

that performance does not improve than making the reservoir bigger (Nx = 1000), which

should most probably be attributed to the fact that the parameters we (over-)tuned

specifically for Nx = 500. We have also experimented with removing the mECG

cancellation part from our architecture entirely and report results in Table 2.

5. Discussion and conclusions

Our approach scored high among 53 other contestants in the Challenge. It is also quite

fast: our slowest submission (19) took about 30 s to process one signal on an up-to-date

personal computer, i.e., twice the real time. The algorithms could easily be made more

precise sacrificing the speed, by making ESNs bigger and/or using more of them.

Using the statistics of the R events biases the system to a usual scenario: it

improves correctness of annotations in healthy settings, but might be less suited to

recognize abnormal events, which might be more important. This should be kept

in mind, and emergency events prioritized if necessary by adapting the statistical

models. Our statistical framework allows to do this explicitly by modifying P (ti|ti−1)

and P (ti|ti−1, ti−2).

Our approach also did not produce the shape of f ECG, but it could be done from the

f R annotations and the preprocessed signal in the same way as for mECG. Alternatively,

ESN could probably learn to extract f ECG directly, given the reference training signals.

Another improvement would be to use logistic regression and readout instead of the

linear one (3), which would be better suited for the probabilistic interpretation. For now

we have chosen the former because it has a closed-form solution and is computationally

much cheaper.

Since the advanced versions of our DP algorithms uses back-tracking, their

adaptation to continuous real-time monitoring should analyze the data in time windows

or refine the previous annotations by backtracking from time to time.

We see in Table 2 that the results without mECG cancellation described in Section

2.3 are comparable with weaker y(t) interpretation algorithms from Table 1. This
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demonstrates robustness of our approach and confirms the notion, that in an intelligent

system, stronger incorporation of high level knowledge can help to deal with even

extreme levels of noise in low level sensory information.

Our f QRS detection is also quite generic and could be used for other types of

signals and annotations, without much hand-crafting because it uses machine learning

and statistics estimated from data.

Open source code of our approach compatible with the Challenge scoring scripts is

made available under http://minds.jacobs-university.de/mantas/fetalQRS.
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