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Abstract—Machine learning is constantly gaining popularity
in real life applications. And one of them is prediction of various
real-life events that depend on a huge number of factors that
are hard to evaluate. In this article we describe the process
of applying XGBoost — one of supervised machine learning
methods — to help in prediction and localization of accidents in
the district heating network of Kaunas region. We also investigate
the importance of the different factors for these events.

Index Terms—supervised machine learning, xgboost, district
heating, accident localization

I. INTRODUCTION

In everyday operation centralised district heating company
“Kauno energija” is supervising more than 900 kilometers of
district heating networks that provide heating and hot water to
118891 customers (as of the end of 2017) in Kaunas region.

Every year pipe breakages in the district heating network
occur. In most of these times the district heating services
must be stopped for the customers. And due to the aged
infrastructure, it is difficult to determine where did the accident
happen. The only sign of accident is often a critical pressure
drop or a frequent refill of the heating water in the system.
There are a lot of cases when repair teams are excavating
the area but do not find the accident and sometimes small
accidents cannot be found and are compensated by system
refill.

When an accident happens any information that would
help to determine its location is helpful. Due to the amount
and complexity of factors that cause accidents it is difficult
to predict them. There are some complex solutions with
thermodynamic and hydro-mechanics models in the market,
which allow to calculate pipe breakage, but they are hard to
use in everyday work and require a lot of investments and
learning efforts.

Also, a Web application for network accident management
TAVSIS was developed and it seemed like a good idea to
integrate accident localization algorithms within that system.
All things considered, it was decided to create a tool for the
heating network supervising personal. And supervised ma-
chine learning algorithms seemed as an inexpensive and valid
option to help in the process of pipe breakage localization.
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II. RELATED WORK ON ACCIDENT LOCALIZATION USING
MACHINE LEARNING METHODS

We were able to find some similar studies where pipe break
accidents were predicted using machine learning methods. In
article [1] pipe breaks were predicted for water distribution
network using pipe attributes and climatic data. The goal of
the authors was to find pipes that can break soon to prioritize
pipe replacements and repairs. Also different models are tested
for best performance: RankBoost.B, Cox proportional hazard
model, Naive Bayes, Logistic Regression and Artificial Neural
Network. The provided results show that RankBoost.B is the
most successful with AUC score of more that 0.85. In article
[2] an ensemble of models are used to predict water utility
pipeline condition. As input the authors use physical pipe
attributes, environmental data, and operational factors. Another
article [3] describes pipe failure modelling for water distri-
bution networks using boosted decision trees. To predict pipe
failures authors use AdaBoost, RUSBoost, Random Forest, and
Decision Tree models.

Although the mentioned articles describe similar methodol-
ogy there are some major differences to our approach. First
of all, we are targeting a district heating network. Secondly,
we are using historic weather data as one of the inputs. And
finally, we have a different goal - to locate pipe segment that
have failed rather than analyse which pipes are most likely to
fail in future.

As for a district heating network we were unable to find
any related work. In article [4] authors use machine learning
approach to detect faults by analysing temperature readings
and some additional data from district heating substations.
In article [5] authors use a completely different methodology
- a deterministic—probabilistic structural integrity analysis to
predict pipeline lifetime and probability of failure.

Our approach is more similar to real-time traffic accident
localization approach described in articles: traffic accident
prediction in the state of Utah (USA) [6]; predicting traffic
accidents through heterogeneous urban data [7].

III. THE DATA
A. Accident records

In this study we analyze pipe breakage accidents (see
Fig. 1) that happened from the January 2013 to September



2019. There were 1466 accidents in total that occurred during
this time. We extracted these attributes: date and time of
the accident occurrence (weekday, month, hour), geographic
location. The accident data are collected using a GIS system
by the company dispatchers that are supervising the district
heating operations 24 hours a day in shifts. When an accident
occurs a dispatcher marks its location on the pipe segment
and this allowed us to use a spatial intersection with the pipe
segments to determine how many accidents have occurred in
each different segment.

Fig. 1. Illustration of a pipe breakage accident.

B. Piping network

There were more than 49 200 of pipe network segments with
a total length of 904.17 kilometers that are used to provide
district heating network services to customers in Kaunas
region. We extracted these attributes from the pipe segments
data table:
« type of anti-corrosion coating (bitumen varnish, no coat-
ing, unknown);
« type of isolation protection (unknown, plaster, tin);
« type of isolation (polyurethane, mineral wool, unknown);
o pipe material (distribution in the data is displayed in
Fig. 2);
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Fig. 2. Distribution of pipe segment materials in Kaunas region

« type of pipe installation (distribution in the data is dis-
played in Fig. 3);
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Fig. 3. Distribution of pipe segment installation methods used in Kaunas
region

« year of the pipe installation;

« type of the heating water parameters (high, low);

e pipe line type (distribution in the data is displayed in
Fig. 4);
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Fig. 4. Distribution of pipe segments in different line types in Kaunas region

« length of the pipe;
« pipe diameter.

A summary of the continuous values is presented in Table I.

TABLE I
INITIAL PIPING DATA SUMMARY FOR CONTINUOUS VALUES

Attribute Mean Median Min Max Nulls
Year of installation 1995 1998 1963 2019 24500
Out. diameter, mm 165 100 25 1000 19580
Segment length, m 18.38 406 0.003 1118.74 0

C. Weather data

Information about the weather conditions was extracted
from archives on “Reliable prognosis” website [8]. We used
one of Kaunas city weather stations. From the data set we
used these attributes:



« temperature;

o atmospheric pressure;

o humidity;

« raining fact.
There were 19 724 records collected at 3-hour intervals during
the analysed period January 2013 - October 2019. Data
interpolation had to be used to get hourly records. Also, the
raining fact was extracted from a human readable message
rather than a numeric value.

IV. METHODOLOGY

The process of our study was:
1) Find and collect necessary data from the data sources;
2) Analyse, identify, and extract useful data;
3) Select machine learning algorithms that would best fit the
case;
4) Prepare training data for the model;
5) Split the prepared data set into training, validation and
testing data sets;
6) Set machine learning model parameters;
7) Execute the learning process;
8) Validate the results;
9) Repeat steps 6 — 8 until expected results are reached;
10) Export the prepared model and test it on the testing data;
11) Deploy the prepared model to production.

A. Data preparation

Probably the most complicated part of this study was data
preparation. We had to connect different sources of informa-
tion to one — training data set which can be used by the
XGBoost machine learning framework. All the processing and
data analysis was performed using these tools:

o ArcGIS Pro software was used to manage geographic data

and perform initial analysis;

« Jupyter Notebook software was used to develop and run

all the process and share the results;

¢ Scikit-learn machine learning framework was used to

prepare training data;

¢ XGBoost gradient boosting framework was used for

model preparation.

There were some attributes that were dropped as they were
considered unimportant. These were attributes with none or
very few values, or irrelevant fields: who edited the data, when
the last edit was performed, etc. The quality of the remaining
data was not perfect either, as some relevant attributes were
missing. To mitigate the problem, we prepared the training
data by using different techniques:

« Data interpolation to increase the frequency of the

weather data to one-hour intervals;

¢ Spatial intersection to connect accidents to pipe segments,

to find the missing pipe attributes from the connected
segments;

o Calculation of mean values to fill the missing continuous

values;

« Calculation of the most frequent values to fill the missing

categorical values;

e One-hot encoding to transform the categorical values
to numeric as the model cannot handle non-numeric
values. This method creates a binary column for each
category and returns a sparse matrix or a dense array
(depending on the sparse parameter). This encoding is
needed for feeding categorical data to many scikit-learn
estimators, notably linear models and SVMs with the
standard kernels [9].

Also we added some additional properties: month, day of
week, hour of day, was it raining during the accident or not,
the total count of accidents in the segment. We rounded time of
accidents to hours to the lower side dropping any remaining
minutes or seconds as there is always some delay between
when the accident really happens and when it is noticed.

When all the data cleaning was finished, we joined the data
set of pipe segments to the data set of accidents. We performed
this operation by using spatial join method provided by Arcpy
library which allowed us to join accident record to the nearest
pipe segment within less than 10 meter distance. Next, due to
data imbalance as described in section IV-E we generated 5
times as many negative samples as we have accident records.
We used a negative sample selection technique [6]:

« Randomly select an accident record from the positive

examples;

« Randomly alter: the pipe segment, the hour of the day,

or the day of the year;

« If the new sample is not within the accident records, add

it to the list of negative samples;

« Repeat until we have 5 times as many negative samples

as positive.
This allowed us to work with a relatively low amount of data
(in total 6619 pipe segment in time records).

After that we connected the weather data to all these
records. The final data set contained these attributes: count
of accidents in segment, segment length, year of segment
installation, segment diameter, weather temperature, weather
humidity, raining state, atmospheric pressure, segment mate-
rial, type of segment insulation, type of segment installation,
subtype of the segment, hour of sample, weekday of sample,
month of sample.

Finally, after the training data was prepared, it was split into
two parts: 70 % for training and 30 % for testing. To make
sure that positive (accident happened) and negative (accident
did not happened) samples are distributed in equal rates for
both data sets. For this we had to set the stratify parameter in
the scikit-learn library for the output column indicating if the
accident happened or not.

B. Model

As we mentioned before, our goal is to find most vulnerable
pipe segments. We had to create a model which would be able
to predict the probability of an accident in all piping segments
at given situation. And by sorting these probabilities from
highest to lowest we would be able to provide district heating
network dispatcher with information which pipe segments are



most vulnerable to having accident with current conditions:
time properties (month, day of week, hour), weather con-
ditions (temperature, humidity, atmospheric pressure, raining
conditions) and pipe segment properties. By identifying the
vulnerable pipe segments after the occurrence of the accident,
the dispatcher can send repair teams to investigate them. It is
important to mention that we do not really care how high or
low the probability is in absolute value, because we already
know that an accident has happened but we do not know where
exactly.

In this study we used a decision tree ensemble based on
gradient boosting algorithm called XGBoost. It was developed
as a research project at the University of Washington. Since
its release in 2016 it quickly gained popularity, won numerous
Kaggle challenges, and is used in real-life applications. It is
available as Open Source project and is actively developed by a
community of data scientists. The XGBoost algorithm is based
on gradient tree boosting model with additional regularization
term which helps to smooth the final learnt weights to avoid
over-fitting [10]. The regularized objective, or loss function,
can be described as

L(®) = Ui vi) + Y _QUfe), (1)
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where [ is a differentiable convex loss function that measures
the difference between the prediction y; and the target y;.
The second term {2 penalizes the complexity of the model.
Intuitively, the regularized objective will tend to select a model
employing simple and predictive functions. This loss function
can be integrated into the split criterion of decision trees
leading to a pre-pruning strategy.

Furthermore, randomization techniques are also imple-
mented in XGBoost both to reduce over-fitting and to increase
the training speed.

There are multiple parameters that were tuned to get the
best results (as described in XGBoost documentation [11]):

« max_depth — the maximum depth of the tree. Increasing
this value will make the model more complex and more
likely to over-fit.

« min_child_weight — the minimum sum of instance weight
(Hessian) needed in a child. If the tree partition step
results in a leaf node with the sum of instance weight less
than the min_child_weight, then the building process will
give up further partitioning. In a linear regression task,
this simply corresponds to minimum number of instances
needed to be in each node. The larger min_child_weight
is, the more conservative the algorithm will be.

o eval_metric — type of evaluation metrics for validation
data, a default metric will be assigned according to ob-
jective (RMSE for regression, and error for classification,
mean average precision for ranking).

« objective — learning task and the corresponding learning
objective.

e eta - step size shrinkage used in update to prevents over-
fitting. After each boosting step, we can directly get the

weights of the new features, and eta shrinks the feature
weights to make the boosting process more conservative.
« carly_stopping_rounds — activates early stopping. Vali-
dation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training.
« num_boost_round — number of boosting iterations.

Weused this model from a Python API. These final parame-
ters for model were chosen by hand while testing for the best
results:

« max_depth = 6,

o min_child_weight = 5.0,

e eval_metric = ’auc’,

« objective = ’binary:logistic’,
e cta = 0.5.

C. Training

When the data was prepared, machine training was an easy
step. After few try-outs we were able to get a model with
88.88 % of AUC (area under the curve) rating. It took only
13 epochs to reach this value, but the training kept going 50
epochs to determine that the value does not further increase.

D. Evaluation

One of the advantages of decision tree-based models is that
it allows us to trace the key factors of how the decision was
made. There are multiple characteristics that determine how
well the model performs. The most important of them are:

a) Accuracy: Accuracy explicitly takes into account
the classification of negatives, and is expressible both as a
weighted average of Precision and Inverse Precision and as a
weighted average of Recall and Inverse Recall [12]. For us
it shows the rate of correctly predicted result (accident or no
accident):

TP + TN
TP +TN + FP + FN’

2

Accuracy =

where:

TP = True Positives;

TN = True Negatives;
FP = False Positives;
FN = False Negatives.

b) Precision: It denotes the proportion of predicted
positive cases that are correctly real positives. This is what
Machine Learning, Data Mining and Information Retrieval
focus on, but it is totally ignored in ROC analysis. It can
however analogously be called True Positive Accuracy, being
a measure of accuracy of predicted positives in contrast with
the rate of discovery of real positives [12]. It shows how many
accidents were predicted correctly compared to all predicted
accidents

TP

TP + FP ®)

Precision =



¢) Recall: Tt is the proportion of Real Positive cases that
are correctly Predicted Positive. Recall has been shown to have
a major weight in predicting the success of word alignment. In
a medical context Recall is moreover regarded as primary, as
the aim is to identify all Real Positive cases, and it is also one
of the legs on which ROC analysis stands. In this context it
is referred to as True Positive Rate [12]. For us it shows how
many accidents were predicted correctly from all the occured

accidents. TP
Recall = —— 4)
TP + FN

d) ROC curve (Receiver Operating Characteristic
curve): It is a graph showing the performance of a classi-
fication model at all classification thresholds. The curve plots
two parameters [12]:

e True Positive Rate;
o False Positive Rate.

A ROC curve plots true positive rate vs. false positive rate at
different classification thresholds. Lowering the classification
threshold classifies more items as positive, thus increasing both
False Positives and True Positives. A perfect classifier will
score in the top left-hand corner (False Positive Rate=0, True
Positive Rate=100 %). A worst-case classifier will score in the
bottom right hand corner (False Positive Rate=100 %, True
Positive Rate=0). A random classifier would be expected to
score somewhere along the positive diagonal (True Positive
Rate = False Positive Rate) since the model will throw up
positive and negative examples at the same rate [12].

e) AUC (area under the curve): The area under such
a multipoint curve is thus of some value, but the optimum
in practice is the area under the simple trapezoid [12]. As
shown in Fig. 5, the main diagonal represents chance with
parallel isocost lines representing equal cost-performance.
Points above the diagonal represent performance better than
chance and those below - worse than chance. For a single good
(dotted green) system, AUC is area under the curve (trapezoid
between the green line and x = [0,1]). The perverse (dashed
red) system shown is the same (good) system with class labels
reversed [12].

f) Fl-score: F-measure is defined as a harmonic mean
of precision P and recall R [13]

2PR
F = . 5
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E. Issues

During this research we met some issues that had to be
overcome. Some of them are described below.

a) Missing or incomplete data: After the initial run only
30% of positive samples was valid for processing as data
was incomplete. Important features were missing such as pipe
diameter, year of installation, material, etc. And that was a
problem because we already had data imbalance issue with
only 1466 positive samples (pipe segments with registered
accidents). One of the methods we used to calculate some
missing values was spatial intersection. We have intersected
pipes with each other and copied values from connected pipes

tpr

for

Fig. 5. Illustration of ROC analysis [12]

assuming that connected pipes have the same parameters. Also
we filled missing values by replacing them with most frequent
values for categorical values and mean values for continuous
values. Finally, 1 104 out of 1466 of registered accidents were
successfully used in the model.

b) Data imbalance: Every year has at least 8§ 760 hours
and every hour we have more than 49 000 of pipe segments
that would make more than 429 million records every year.
And we have only 1466 accidents registered since 2013
January to 2019 October. If we would use data with this rate of
positive and negative samples, the model would not be able to
predict any of accidents. As by predicting that accidents will
not happen at all it would be almost always right. To mitigate
the problem we used negative sample selection technique as
described in Section IV-A.

c) Non-linear factors of the accidents: One of the prob-
lems of real-life event prediction is that there are many
unknown and immeasurable factors that cause them to occur.
There are many factors that might be important, but we
cannot determine them, or it would require a lot of effort to
collect and provide them to the model. Such factors can be
faults during the pipe production, transportation or installation,
human errors, pipe environment conditions like soil, humid-
ity, temperature changes, materials used in pipe production,
electrical conductivity, chemical environment, etc.

V. RESULTS

XGBoost library has a method to plot the most important
features. Importance is a score that indicates how useful or
valuable each feature was in the construction of the boosted
decision trees within the model. The more an attribute is
used to make key decisions with decision trees, the higher
its relative importance. As shown in Fig. 6, most important
features for district heating network accident prediction are



weather pressure P, temperature T, humidity U, segment length
segment_length, diameter SalSkersmuo and year of
installation PaklojimoMetai.

Feature importance
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Fig. 6. The most important features while constructing boosted decision trees
according to the XGBoost library.

Also as shown in Fig. 7, according to ROC curve our model
performs well compared to random guess. Of course, we have
to keep in mind that these parameters are provided for our
data set where we limited our positive and negative sample
rate to mitigate data imbalance. XGBoost classifier predicts
probability of accidents between 0 and 1. By default, it has a
threshold set to 0.5, meaning that probability higher than 0.5
will yield positive result and less than 0.5 - negative.

With probability threshold set to 0.16 we get these results:

o Test Accuracy: 80.31 %
o Test Precision: 44.92 %
o Test Recall: 80.06 %

o Test F1: 57.55%

But for our approach we care only about the highest proba-
bility with given parameters. Because we already know that
an accident happened but we just do not know where exactly.
That makes even relatively low probabilities valuable to us
as it is additional information that can help us to find the
accident locations. And our user - piping network dispatcher
can use this probability to decide where it most likely have
happened even if probability is relatively low. To compare our
model performance we use AUC score. For XGBoost we get
score of 0.868 as linear regression model reaches AUC score
of 0.857. It can also be seen in ROC curve (see Fig. 7).

Also, we plotted some histograms with the most important
features to see if they have any connection to pipe breakage.

As shown in Fig. 8, more accidents tend to happen when
atmospheric pressure is between 755 and 765 mm Hg.

As shown in Fig. 9, accidents are more likely to happen
during warm temperatures when heating service is provided
only for hot water. It can be explained as in summer hydraulic
testing is performed.
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Fig. 7. Receiver operating characteristic (ROC) curve
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Fig. 8. Histogram of atmospheric pressure vs. accident count

As shown in Fig. 10, more accidents occur when humidity
is higher.

As shown in Fig. 11, more accidents occur in short segments
more often. It can be explained as new short segments are
inserted during pipe repair.

As shown in Fig. 12, accidents happens more often in pipes
with smaller diameters.

VI. DEPLOYMENT

We have successfully trained a machine learning model
using XGBoost framework, but the work was only halfway
done, because this model had to be transferred to a production
environment and used from a Web application. At first it
seemed that it is a good idea to use a new framework from
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Fig. 9. Histogram of temperature vs. accident count
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Fig. 11. Pipe segment length vs. accident count

Microsoft called ML.Net. They declared that it is easy to
integrate any machine learning model that can be converted to
ONNX (Open Neural Network eXchange standard) model, and
XGBoost was convertible, but after a lot of hours spent trying
to launch the solution it was clear that XGBoost model was
not fully supported and will not work. So a simpler approach
was used — the model was published using a Flask RESTful
server library and published through a reverse proxy on IIS.
Occam’s razor principle was proven right once again.

As shown in Fig. 13, we have created accidents prediction
form within TAVSIS web application. It allows district heating
network dispatcher to run trained model by filling form values:
weather temperature, humidity, atmospheric pressure, raining
conditions, month, weekday and hour.

As shown in Fig. 14, after submitting values to the accident
prediction form user gets accident prognosis results. It is a list
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Fig. 12. Pipe diameter vs. accident count
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Fig. 13. Accident prediction form within TAVSIS web application

of pipe segments with accident possibility level (low, medium,
high). User can zoom in to selected a pipe segment and get
its location in the interactive map. This allows him to send a
repair team to check if the pipe segment actually broke.
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Fig. 14. Accident prognosis results

VII. FUTURE WORK

Now we are working on applying different machine learning
models and comparison of their characteristics to determine
the best available model that would fit our needs. Also,
we are evaluating how well the model performs in real-life
applications.

In addition, we are also planning to collect more accident
data from different district heating companies. Finally, we are
considering applying this algorithm to different fields where
piping networks are used, like water supply facilities, sewerage
systems, etc.

VIII. CONCLUSIONS

This paper describes an ongoing study to apply supervised
machine learning algorithms to help localize pipe breakage ac-
cidents in district heating network of Kaunas region. XGBoost
model is trained and used to predict pipe breakages at the



given time and weather conditions. And by sorting predicted
probabilities from highest to lowest we are getting list of
most vulnerable pipe segments. This allows us to provide this
information to network dispatcher inside GIS web application
and help him to determine the location of the accident.
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