
Optimization and Applications of
Echo State Networks with Leaky
Integrator Neurons

Herbert Jaeger, Mantas Lukoševičius, Dan Popovici

International University Bremen
School of Engineering and Science
28759 Bremen, Germany

E-Mail: {h.jaeger,m.lukosevicius,d.popovici}@iu-bremen.de
http: // www. iu-bremen. de/

Udo Siewert

Planet intelligent systems GmbH
Residence Park 1-7
D-19065 Raben Steinfeld, Germany

E-Mail: siewert@planet.de
http: // www. planet. de/

Abstract

Standardly echo state networks (ESNs) are built from simple additive units
with a sigmoid activation function. Here we investigate ESNs whose reservoir
units are leaky integrator units. Units of this type have individual state dy-
namics, which can be exploited in various ways to accommodate the network
to the temporal characteristics of a learning task. We present stability con-
ditions, introduce and investigate a stochastic gradient descent method for
the optimization of the global learning parameters (input and output feed-
back scalings, leaking rate, spectral radius), and demonstrate the usefulness
of leaky integrator ESNs for (i) learning very slow dynamical systems and
re-playing the learnt system at different speeds, (ii) classifying of relatively

mailto:h.jaeger@iu-bremen.de
mailto:m.lukosevicius@iu-bremen.de
mailto:d.popovici@iu-bremen.de
http://www.iu-bremen.de/
mailto:siewert@planet.de
http://www.planet.de/

slow and noisy time series (the Japanese Vowel dataset – here we obtain a
zero test error rate), and (iii) recognizing strongly time-warped dynamical
patterns.

2

1 Introduction

The idea that gave birth to the twin pair of echo state networks (ESNs)
(Jaeger, 2001) and liquid state machines (LSMs) (Maass, Natschlaeger, &
Markram, 2002) is simple. Use a large, random, recurrent neural network as
an excitable medium – the “reservoir” or “liquid”, – which under the influ-
ence of input signals u(t) creates a high-dimensional collection of nonlinearly
transformed versions xi(t) – the activations of its neurons – of u(t), from
which a desired output signal y(t) can be combined. This simple idea leads
to likewise simple offline (Jaeger, 2001) and online (Jaeger, 2003) learning al-
gorithms, sometimes amazingly accurate models (Jaeger & Haas, 2004), and
may also be realized in vertebrate brains (Stanley, Li, & Dan, 1999; Mauk &
Buonomano, 2004).

It is still largely unknown what properties of the reservoir are responsible
for which strengths or weaknesses of an ESN for a particular task. Clearly,
reservoirs differing in size, connectivity structure, type of neuron, or other
characteristics will behave differently when put to different learning tasks. A
closer analytical investigation and/or optimization schemes of reservoir dy-
namics has attracted the attention of several authors (Schiller & Steil, 2005;
M.C., Xu, & Principe, accepted 2006; Schmidhuber, Gomez, Wierstra, &
Gagliolo, 2006, in press; Zant, Becanovic, Ishii, Kobialka, & Plöger, 2004).
A door-opener result for a deeper understanding of reservoirs/liquids in our
view is the work of Maass, Joshi, and Sontag (2006) who show that LSMs
with possibly nonlinear output readout functions can approximate dynam-
ical systems of nth order arbitrarily well, if the liquid is augmented by n
additional units which are trained on suitable auxiliary signals. Finally, it
deserves to be mentioned that in theoretical neuroscience the question of how
biological networks can process temporal information has been approached in
a fashion that is related in spirit to ESNs/LSMs. Precise timing phenomena
can be explained as emerging from the network dynamics as such, without
the necessity of special timing mechanisms like clocks or delay lines (Mauk
& Buonomano, 2004). Buonomano (2005) presents an unsupervised learn-
ing rule for randomly connected, spiking neural networks that results in the
emergence of neurons representing a continuum of differently timed stimulus
responses, while preserving global network stability.

In this paper we add to this growing body of “reservoir research” and take
a closer look at ESNs whose reservoir is made from leaky integrator neurons.
Leaky integrator ESNs were in passing introduced in (Jaeger, 2001) and
(Jaeger, 2002b); fragments of what will be reported here appeared first in a
technical report (Lukoševičius, Popovici, Jaeger, & Siewert, 2006).

This article is composed as follows. In Section 2 we provide the system

1

equations and point out basic stability conditions – amounting to algebraic
criteria for the echo state property (Jaeger, 2001) in leaky integrator ESNs.
Leaky integrator ESNs have one more global control parameter than the stan-
dard sigmoid unit ESNs have: in addition to the input and output feedback
scaling, and the spectral radius of the reservoir weight matrix, a leaking rate
has to be optimized. Section 3 explores the impact of these global controls on
learning performance and introduces a stochastic gradient descent method
for finding the optimal settings. The remainder is devoted to three case stud-
ies. Firstly, managing very slow timescales by adjusting the leaky neurons’
time constants is demonstrated with the “figure eight” problem (Section 4).
This is an autonomous pattern generation task which also presents interest-
ing dynamical stability challenges. Secondly, we treat the “Japanese Vowel”
dataset. Using leaky integrator neurons and some tricks of the trade we
were able to achieve for the first time a zero test misclassification rate on
this benchmark (Section 5). Finally, in Section 6 we demonstrate how leaky
integrator ESNs can be designed which are inherently time warping invariant.

For all computations reported in this article we used Matlab. The Matlab
code concerning the global parameter optimization method, the “figure eight”
and the Japanese Vowel studies is available online at http://www.faculty.
iu-bremen.de/hjaeger/pubs.html.

2 Basic mathematical properties

2.1 System equations

We consider ESNs with K inputs, N reservoir neurons and L output neurons.
Let u = u(t) denote the K-dimensional external input, x = x(t) the N -
dimensional reservoir activation state, y = y(t) the L-dimensional output
vector, Win, W, Wout and Wfb the input / internal / output / output
feedback connection weight matrices of sizes N × K, N × N , L × (K + N)
and N × L, respectively. Then the continuous-time dynamics of a leaky
integrator ESN is given by

ẋ =
1

c

(
−a x + f(Winu + Wx + Wfby)

)
, (1)

y = g(Wout[x ; u]), (2)

where c > 0 is a time constant global to the ESN, a > 0 is the reservoir
neuron’s leaking rate (we assume a uniform leaking rate for simplicity), f
is a sigmoid function (we will use tanh), g is the output activation function
(usually the identity or a sigmoid) and [;] denotes vector concatenation.

2

http://www.faculty.iu-bremen.de/hjaeger/pubs.html
http://www.faculty.iu-bremen.de/hjaeger/pubs.html

Using an Euler discretization with stepsize δ of this equation we obtain the
following discrete network update equation for dealing with a given discrete-
time sampled input u(n δ):

x(n + 1) = (1− aδ

c
) x(n) +

+
δ

c
f(Winu((n + 1)δ) + Wx(n) + Wfby(n)), (3)

y(n) = g(Wout[x(n) ; u(nδ)]). (4)

2.2 Stability: the echo state property

The Euler discretization leads to a faithful rendering of the continuous-time
system (1) only for small δ. When δ becomes too large, the discrete approx-
imation deteriorates or even can become unstable. There are several notions
of stability which are relevant for ESNs. In Section 4 we will be concerned
with the attractor stability of ESNs trained as pattern generators; but here
we will start with a more basic stability property of ESNs, namely the echo
state property. Several equivalent formulations of this property are given in
(Jaeger, 2001). According to one of these formulations, an ESN has the echo
state property if it washes out initial conditions at a rate that is independent
of the input, for any input sequence that comes from a compact value set:

Definition 1 An ESN with reservoir states x(n) has the echo state property
if for any compact C ⊂ RK, there exists a null sequence (δh)h=0,1,2,... such that
for any input sequence (u(n))n=0,1,2,... ⊆ C it holds that ‖x(h)− x′(h)‖ ≤ δh

for any two starting states x(0),x′(0) and h ≥ 0.

For leaky integrator ESNs, a sufficient and a necessary condition for the
echo state property are known, which we cite here from an early techreport
(Jaeger, 2001).

Proposition 1 Assume a leaky integrator ESN according to equation (3),
where the sigmoid f is the tanh function and (i) the output activation func-
tion g is bounded (for instance, it is tanh), or (ii) there are no output feed-
backs, that is, Wfb = 0. Let σmax be the maximal singular value of W. Then
if |1− δ

c
(a− σmax)| < 1 (where σmax is the largest singular value of W), the

ESN has the echo state property.

The proof (a streamlined version of the proof given in (Jaeger, 2001)) is given
in the Appendix. A tighter sufficient condition for the echo state property
in standard sigmoid ESNs has been given in (Buehner & Young, 2006); it
remains to be transferred to leaky-integrator ESNs.

3

Proposition 2 Assume a leaky integrator ESN according to equation (3),
where the sigmoid f is the tanh function. Then if the matrix W̃ = δ

c
W +

(1−a δ
c
) I (where I is the identity matrix) has a spectral radius |λ|max exceeding

1, the ESN does not have the echo state property.

The proof is a straightforward demonstration that the linearized ESN with
zero input is instable around the zero state when |λ|max > 1, see (Jaeger,
2001). In practice it has always been sufficient to ensure the necessary con-
dition |λ|max(W̃) < 1 for obtaining stable leaky integrator ESNs. We call the
quantity |λ|max(W̃) the effective spectral radius of a leaky integrator neuron.

One further natural constraint on system parameters is imposed by the
intuitions behind the concept of leakage:

a
δ

c
≤ 1, (5)

since a neuron should not in a single update leak more excitation than it has.

3 Optimizing the global parameters

In this section we discuss practical issues around the optimization of the
various global parameters that occur in (3). By “optimization” we mainly
refer to the goal of achieving a minimal training error. Achieving a minimal
test error is delegated to cross-validation schemes which need a method for
minimizing the training error as a substep.

We first observe that optimizing δ is by and large a non-issue. Raw
training data will almost always be available in a discrete-time version with a
given sampling period δ0. Changing this given δ0 means over- or subsampling.
Oversampling might be indicated only in special cases, for instance, when the
given data are noisy and when δ0 is rather coarse and when a guided guess
of the noiseless form of u(t) is available – then one may use these intuitions
to first smoothen the noise out of u(t) with a tailored interpolation scheme,
and then oversample to escape from the coarseness of δ0; an example where
this is common practice is the well-known Laser dataset from the Santa
Fé competition. A more frequently considered option will be subsampling
with the aim of saving computation time in training and model exploitation.
Opting for δ1 = kδ0, a network updated by (3) with δ1 will generate in the
n-th update cycle a reservoir state x(n) which will be close to the state
x(kn) of a network updated with δ0 – at least as long as the coarsening
from δ0 to δ1 does not discard valuable information from the inputs, and as
long as the coarser discretization from (1) to (3) does not incur a significant

4

discretization error. Since the learnt output weights depend only on the
pairings of reservoir states with teacher outputs, they will be similar in both
cases. Thus, the question whether one subsamples is mainly a question of
computational resource management and of whether no (or only negligible)
relevant information from the training data gets lost. Beyond this, the quality
of the ESN model should remain unaffected. We will therefore assume in the
following that a suitable δ has been fixed beforehand, and we will write u(n)
instead of u(nδ) to indicate that the input sequence is considered a given,
purely discrete sequence. This allows us to condense δ/c into a compound
gain γ, giving

x(n + 1) = (1− aγ) x(n) +

+γ f(Winu(n + 1) + Wx(n) + Wfby(n)), (6)

y(n) = g(Wout[x(n) ; u(n)]) (7)

as a basis for our further considerations. Next we find that γ need not be
optimized. For every ESN set up according to (6) and (7) there exists an
alternative ESN with exactly the same output, which has γ = 1. This can
be seen as follows. Let E be an ESN with weights Win,W,Wfb, leaking
rate a and gain γ. Dividing both sides of (6) by γ, introducing ã = aγ and
rewriting Wx(n) to (γW) 1

γ
x(n) gives

1

γ
x(n + 1) = (1− ã)

1

γ
x(n) +

+f(Winu(n + 1) + (γW)
1

γ
x(n) + Wfby(n)), (8)

which gives the discrete update dynamics for an ESN Ẽ having internal
weights W̃ = γW and γ̃ = 1, such that this dynamics is identical to the
update dynamics of E except for a scaling factor 1/γ of the states. If we
scale the first N components of Wout by γ, obtaining W̃out, the resulting
output sequence

y(n) = g(W̃out[
1

γ
x(n) ; u(n)]) (9)

is identical to that from (4). Thus we may without loss of generality use the
update equation

x(n + 1) = (1− a) x(n) +

+f(Winu(n + 1) + (γW)x(n) + Wfby(n)), (10)

5

or equivalently, if we agree that W have unit spectral radius and that the
input and feedback weight matrices Win,Wfb are normalized to entries of
unit maximal absolute size,

x(n + 1) = (1− a) x(n) + (11)

+f(sinWinu(n + 1) + (ρW)x(n) + sfbWfby(n) + sνν(n + 1)),

y(n) = g(Wout[x(n) ; u(n)]) (12)

where ρ is now the spectral radius of the reservoir weight matrix and sin, sfb

are the scalings of the input and the output feedback. We have also added
a state noise term ν in (11), where we assume that ν(n + 1) is a suitably
normalized noise vector (we use uniform noise ranging in [-0.5, 0.5], but
Gaussian noise with unit variance would be another natural choice). The
scalar sν scales the noise. This noise term is going to play an important role.
Equations (11) and (12) establish the platform for all our further investiga-
tions. Considering these equations, we are faced with the task to optimize
six global parameters for minimal training error: (i) reservoir size N , (ii) in-
put scaling sin, (iii) output feedback scaling sfb, (iv) reservoir weight matrix
spectral radius ρ, (v) leaking rate a, and (vi) noise scaling sν .

Stability of ESNs may become problematic when there is output feedback.
Output feedback is mandatory for pattern-generating ESNs, and we will
be confronted with this issue in Section 4. The bulk of RNN applications
however is non-generative but purely input-driven (e.g., dynamic pattern
recognition, time series prediction, filtering or control), and ESN models for
such applications should, according to our experience, be set up without
output feedback.

Among these six global parameters, the reservoir size N plays a role which
is different from the roles of the others. Optimizing N means to negotiate
a compromise between model bias and model variance. The other global
controls shape the dynamical properties of the ESN reservoir. One could say,
N determines the model capacity, and the others the model characteristic.
With respect to N , we usually start out from the rule of thumb that the
N should be about one tenth of the length of the training sequence. If the
training data are deterministic or come from a very low-noise process, we feel
comfortable with using larger N – for instance, when learning to predict a
chaotic process from almost noise-free training data (Jaeger & Haas, 2004),
we used a 1,000 unit reservoir with 2,000 time steps of training data. Fine-
tuning N is then done by cross-validation.

Having decided on N in this roundabout fashion, we proceed to optimize
the parameters (ii) – (vi). This is a nonlinear, five-dimensional minimization

6

problem, where the target function is the training error. In the past no
informed, automated search method was available, so we always tuned the
global learning controls by manual search. This works to the extent that
the experimenter has good intuitions about how the reservoir dynamics is
shaped by these controls. In our experience with student projects, it became
however clear that persons lacking a long-time experience with ESNs often
settle on quite suboptimal global controls. Furthermore, in online adaptive
usages of ESNs an automated optimization scheme would also be welcome.

We now develop such a method. It will be based on a stochastic gradient
descent, where the controls (ii) – (v) follow the downhill gradient of the
training error. The noiselevel sν will play an important role in stabilizing
this gradient descent; it is not itself a target of optimization. To set the
stage, we first recapitulate the stochastic gradient optimization of the output
weights with the least mean square (LMS) algorithm (Farhang-Boroujeny,
1998) known from linear signal processing. Let (u(n),d(n))n≥1 be a right-
infinite signal with input u(n) and a (teacher) output d(n). The objective
is to adapt the output weights Wout online using time-dependent weights
Wout(n) such that the network output y(n) follows d(n). Introducing the
error and squared error

ε(n) = d(n)− y(n), E(n) =
1

2
‖ε(n)‖2. (13)

the LMS rule adapts the output weights by

Wout(n + 1) = Wout(n) + λ ε(n)[x(n− 1);u(n)]T, (14)

where λ is a small adaptation rate and ·T denotes the vector/matrix trans-
pose. This equation builds on the fact that

∂E(n + 1)

∂Wout
= ε(n + 1)[x(n− 1);u(n)]T, (15)

so the update (14) can be understood as an instantaneous attempt to reduce
the current output error by adapting the weights.

In order to optimize the global controls a, ρ, sin and sfb by a similar
stochastic gradient descent, we must calculate ∂E(n + 1)/∂p, where p is one
of a, ρ, sin, or sfb.

Using 0u = (0, . . . , 0)T (where ·T denotes vector/matrix transpose; as
many 0’s as there are input dimensions) for a shorter notation, the chain
rule yields for all p ∈ {a, ρ, sin, sfb}

∂E(n + 1)

∂p
= −εT(n + 1)Wout(n + 1)[

∂x(n + 1)

∂p
; 0u], (16)

7

Thus we have to compute the various ∂x(n)/∂p. Again invoking the chain
rule, and observing (12) (where we assume linear output units with g = id),
and putting X(n) = sinWinu(n)+(ρW)x(n−1)+sfbWfby(n−1), we obtain

∂x(n)

∂a
= (1− a)

∂x(n− 1)

∂a
− x(n− 1) + f ′(X(n)) . ∗

. ∗
(

ρW
∂x(n− 1)

∂a
+

+sfbWfbWout(n− 1)[
∂x(n− 2)

∂a
; 0u]

)
(17)

∂x(n)

∂ρ
= (1− a)

∂x(n− 1)

∂ρ
+ f ′(X(n)) . ∗

. ∗
(

ρW
∂x(n− 1)

∂ρ
+ Wx(n− 1)+

+sfbWfbWout(n− 1)[
∂x(n− 2)

∂ρ
; 0u]

)
(18)

∂x(n)

∂sin
= (1− a)

∂x(n)

∂sin
+ f ′(X(n)) . ∗

. ∗
(

ρW
∂x(n− 1)

∂sin
+ Winu(n)+

+sfbWfbWout(n− 1)[
∂x(n− 2)

∂sin
; 0u]

)
(19)

∂x(n)

∂sfb
= (1− a)

∂x(n− 1)

∂sfb
+ f ′(X(n)) . ∗

. ∗
(

ρW
∂x(n− 1)

∂sfb
+ Wfby(n− 1)+

+sfbWfbWout(n− 1)[
∂x(n− 2)

∂sfb
; 0u]

)
(20)

where .∗ denotes component-wise multiplication of two vectors. These equa-
tions simplify when there is no output feedback:

8

∂x(n)

∂a
= (1− a)

∂x(n− 1)

∂a
− x(n− 1) + f ′(X(n)) . ∗

. ∗
(

ρW
∂x(n− 1)

∂a

)
(21)

∂x(n)

∂ρ
= (1− a)

∂x(n− 1)

∂ρ
+ f ′(X(n)) . ∗

. ∗
(

ρW
∂x(n− 1)

∂ρ
+ Wx(n− 1)

)
(22)

∂x(n)

∂sin
= (1− a)

∂x(n)

∂sin
+ f ′(X(n)) . ∗

. ∗
(

ρW
∂x(n− 1)

∂sin
+ Winu(n)

)
(23)

Equations (17)-(20) (or (21)-(23) when there are no output feedbacks) pro-
vide a recursive scheme to compute ∂x(n)/∂p from ∂x(n− 1)/∂p and ∂x(n− 2)/∂p,
or respectively from ∂x(n− 1)/∂p only in the absence of output feedback.
At startup times 1 and 2, the missing derivatives are initialized by arbitrary
values (we set them to zero).

Inserting the expressions ∂x(n)/∂p into (16) finally gives us the desired
(recursive) stochastic parameter updates:

p(n + 1) = p(n)− κ
∂E(n + 1)

∂p
, (24)

where κ is an adaptation rate. We remark in passing that when the tanh is
used for the activation function f , its derivative is given by

f ′(x) = tanh′(x) =
4

2 + exp(2x) + exp(−2x)
. (25)

One caveat is that the parameter updates must be prevented to lead the ESN
away from the echo state property. Specifically, note that ρ and a together
determine the effective spectral radius |λ|max of the reservoir, which is the
spectral radius of the matrix ρW + (1 − a)I (Proposition 2; recall that we
agreed here on W having unit spectral radius). From experience we know
that the echo state property is given if |λ|max < 1. A simple algebra argument
shows that |λ|max ≤ ρ+1−a; the bound tightens to an equality iff the largest
eigenvalue of W is its spectral radius. Thus the echo state property is for all
practical purposes guaranteed when

ρ ≤ a. (26)

9

This is easy to enforce while the online adaptation proceeds. We proceed to
explain the practical usage of our stochastic update equations. First note
that one has to carry out a simultaneous optimization of the output weights
Wout and the controls (ii) – (v), i.e., perform an error gradient descent in
the combined output weight and control parameter space. We have tested
two variants:

A. Stochastic output weight update. The updates (24) are executed to-
gether with the stochastic output weight updates (14). Whether in a
time step one first updates the weights and then the parameters, or
vice versa, should not matter. We updated the weights second, but
haven’t tried otherwise.

B. Pseudo-batch output weight update. The output weights are up-
dated much more rarely than the control parameters, which are up-
dated at every time step using (24). At every T -th cycle, the out-
put weights are recomputed with the known batch learning algorithm.
Specifically, at times m = T n + 1, ..., (T + 1) n harvest the states
[x(m) ; u(m)] row-wise into a T × (N + K) buffer matrix A and the
teacher outputs d(m) into a T×1 matrix B. At time (T +1) n compute
new output weights by linear regression of the teachers on the states
via Wout((T + 1)n) = (A+ B)T. When state noise ν(n) is used, we
added it to A after harvesting the states, which are however updated
without noise in order not to disturb the adaptation of the parameters
p.

We found that method B gave faster convergence with an increased risk of
instability and generally preferred it. Method A may be the better choice in
automated online adaptation applications.

To initialize the procedure, we fixed some reasonable starting values p(0)
for our four global parameters and computed initial output weights Wout(0)
by the standard batch method, using controls p(0) and a short training sub-
sequence.

In our numerical experiments, certain difficulties became apparent which
shed an interesting light on ESNs in general. For the sake of discussion,
let us consider a concrete task. A one-dimensional input sequence u(n) =
sin(n) + sin(0.51 ∗ n) + sin(0.22 ∗ n) + sin(0.1002 ∗ n) + sin(0.05343 ∗ n) was
prepared, a sum of essentially incommensurate sines with periods ranging
from about 6 to about 120 discrete time steps. This sequence was scaled to a
range in [0,1]. The desired output was d(n) = u(n− 5), that is, the task was
a delay-5 short-term recall task. A small ESN with N = 10 was employed.

10

Due to its sigmoid units in the reservoir, such a small ESN would not be able
to recall with delay 5 a white noise signal; for any reasonable performance
on the multiple sines input the network has to exploit the regularity in the
data.

To get a first impression of the impact of global control parameters on
the training error, we fixed sin at a value of 0.3, and trained the ESN offline
with zero state noise (sν = 0) on a 500 step training sequence (plus 200 steps
initial washout). We did this exhaustively for all values of 0 ≤ ρ ≤ a ≤ 1
in increments of 1/40. Figure 1 shows the NRMSEs and the mean absolute
output weight sizes obtained in each cell in the 41 × 41 grid of this a-ρ-cross-
section in parameter space.

white = max =
1.01
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.01

black = min =
0.21
white = max =
1.87e+010
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 1: NRMSE (left) and absolute mean output weights (right) obtained
in the multiple sines recall task with different values of a (x-axis) and ρ (y-
axis). The shades of gray represent the decadic logarithm of the NRMSEs
and weight sizes, such that black corresponds to the minimal value in the
diagram and white to the maximal value. The upper triangle in each panel
is blank because here the effective spectral radius exceeds one, and no model
was trained. For details see text.

Several features of these plots deserve a comment. First, the NRMSE
landscape in this very simple task has at least three local minima. Second,
these minima are obtained at values for a < 1, that is, the leaky integration
mechanism is, in fact, useful. Third, the best NRMSEs fall into regions of
large output weights (order of 1,000 and above). Large output weights are as
a rule undesirable for ESNs. They typically imply a poor generalization to
test data unless the latter come from exactly the same (deterministic) source
as the training data.

Large output weights – or rather, the fragility of model performance in
the face of perturbations which they usually imply – also are prone to create
difficulties for a gradient descent approch to optimize the global controls p.
The danger lies in the fact that small changes of p, given large output weights

11

Wout(n), will likely lead to great changes in E(n + 1). In geometrical terms,
the curvatures ∂2E(n)/∂p2(n) is large and thereby dictates small adaptation
rates κ to ensure stability.

To illustrate this, we fixed sin
ref = 0.3, sfb

ref = 0 and numerically estimated
and plotted ∂2E/∂a2 for each of the cells in the same 41 × 41 a-ρ-grid as be-
fore. Figure 2 (bottom row, rightmost panel) shows the result. Juxtaposing
this graph with the NRMSE and output weight plots in the top and cen-
ter row above it in Figure 2 we find that first, some of the a-ρ-combinations
where the NRMSE attains a local minimum fall into a range where the output
weights are greater than 1,000 and the curvature is greater than 10,000, and
second, many paths along the gradients in the NRMSE-landscape shown in
Figure 1 (left) will cross areas in the curvature landscape with values greater
than 10,000. As a necessary condition for stability of gradient descent in the
a direction, the adaptation rate must not exceed half the curvature, that is,
κ ≤ 1/5000. But since in some (small) regions in this a-ρ-cross-section the
curvature attains values even greater than 1e+19, to ensure stability of a
gradient descent in all circumstances we would have to reduce κ to less than
1e-19. This would result in an impossibly slow progress. A dynamic adapta-
tion of the adaptation rate would not solve the problem, because the adap-
tation of κ would have to trim κ to microscopic size when passing through
regions of very large curvature – the process would effectively get halted in
these spots.

In the example from the rightmost column of panels in Figure 2 we find
that the correlation between the size of output weights and curvature is
clearly apparent as a trend (but not everywhere consistent). Small output
weights can be enforced by state noise administered during training or other
regularization methods - all of which however may incur a loss in training and
testing accuracy if high-precision training data are available. To illustrate
the generally beneficial aspects of small output weights, we repeated the
curvature survey in the a-ρ-cross-section with the same settings as before,
but administering now state noise of sizes sν = 0.1; 0.01; 0.0001 (first three
panels in bottom row in Figure 2). The curvature is thereby much reduced.
The means of the curvature values in the bottom panels of Figure 2 is 26.2
(sν = 0.1); 107.4 (sν = 0.01); 889.7 (sν = 0.0001) and 1.4e+006 (zero noise)
[we discarded the cells on the lower border of the grid for the computation of
the means because the curvatures explode at the very margin where ρ = 0,
an unnatural condition for an ESN]. Thus, our ESN updated with a state
noise of size 0.1 would admit an adaptation rate five orders of magnitude
larger than in the zero noise condition. This is of course only a coarse and
partial account. But the basic message is clear: stability is a critical issue
in this game, and it can be improved (and convergence sped up) by a noisy

12

black = min =
0.55

white = max =
1.10
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.21

white = max =
1.02
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.026

white = max =
1.001
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.010

white = max =
1.01
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

black = min =
0.092

white = max =
0.63
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.36

white = max =
7.77
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.55

white = max =
509
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.21
white = max =
1.87e+010
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

black = min =
0.00046

white = cutoff =
100
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.037

white = cutoff =
200
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min = 1.02
max = 259960

0 0.5 1
0

0.2

0.4

0.6

0.8

1

white = cutoff =
10000
(or n.d.)

black = min = 0.34
max = 1.5e+19

white = cutoff =
1e+006
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 2: The multiple Sines recall task. In each panel, the x-axis is a and
the y-axis is ρ. In each row of panels, from left to right the panels correspond
to state noise levels of size 0.1, 0.01, 0.0001 and 0.0. Top row: NRMSE reliefs
with traces of the gradient descent algorithm at work. Center row: average
absolute output weight sizes. Bottom row: curvatures ∂2E/∂a2. Tiny white
speckles in some curvature plots result from rounding noise close to zero -
should be black. Elevations in all surface plots are in logarithmic (base 10)
scale. Several surface plots have clipped maximum height, see inset texts.

state update (or other regularizing methods that yield small output weights).
In order to assess the practicality of the proposed stochastic gradient

descent method, and at the same time the impact of state noise on the model
accuracy and the location of optimal parameters p, we ran the method from
three starting values a/ρ = 0.33/0.2; 0.8/0.2; 0.66/0.2, in the version
with no output feedback. To obtain meaningful graphical renderings of the
results in the a-ρ-plane, we froze sin at a value of 0.3, which was found to
be close to the optimal value in preliminary experiments. We used the “B”
version of output weight adaptation. We ran the method with four state
noise levels of sν = 0.1; 0.01; 0.0001; 0.0. The corresponding adaptation
rates were κ = 0.002; 0.002; 0.0002; 0.0001, and the sampling periods T for
the recomputation of the output weights were T = 1, 000; 1, 000; 100; 50.
The reason for choosing smaller T in the lower-noise conditions is that the

13

output weights have to keep track of the parameter adaptation more closely
due to the greater curvature of the parameter error gradients. The method
was run for a duration of 200,000; 200,000; 1,000,000; 1,000,000 steps in the
four conditions.

The top row in Figure 2 shows the resulting developments of a(n) and
ρ(n). The center row panels in the figure show the corresponding “weight-
scapes”, i.e. the average absolute output weights obtained for the various
a-ρ-combinations. Progress of gradient descent is much faster in the two
high-noise conditions (mind the different runtimes of 200,000 vs. 1 Mio steps).
Attempts to speed up the low-noise trials by increasing κ led to instability.
We monitored the NRMSE development of each of the gradient traces (not
shown here); they all were noisily decreasing (as it should be) except for the
leftmost trace in the noise-0.0001-panel. When this particular trace takes
its final right turn, away from what clearly would be the downhill direction,
the NRMSE starts to increase and the output weights sizes start to fluctuate
greatly - a sign of impending instability.

The stochastic developments of a(n) and ρ(n) in the top row of Figure 2
clearly does not follow the gradient indicated by the grayscale landscape. The
reason is that the grayshade level plots are computed by running the standard
offline learning algorithm for ESNs for each grid cell on a fixed training se-
quence, whereas the gradient descent traces compute ESN output weights as
they move along, via the method “B” described above, from reservoir states
that have been collected while the parameter adaptation proceeded. That
is, the output weights which the gradient descent method uses are derived
from somewhat noisier reservoir states than the NRMSE level plots, because
in addition to the administered state noise there was parameter adaptation
noise (a remedy suggested by a reviewer would be to alternate between pe-
riods where parameters p are not adjusted and states without adaptation
noise are collected for updating the output weights, and periods where pa-
rameters p are stochastically adjusted with fixed output weights – we did not
try this because it would double the computational load). Furthermore, the
output weight updates at intervals of T always “come late” with respect to
the a and ρ updates, using reservoir states which were obtained with earlier a
and ρ. Thus all we should expect to learn from these graphics is whether the
asymptotic values of a and ρ coincide with the minima of the error landscape
– which is the case for the high-noise condition but increasingly becomes false
with reduced noise.
The compound theme of noise or other regularizers, stability, generalization
capabilities, and size of output weights calls for further investigations. It is
in our view one of the most important goals for ESN research to understand
how reservoirs can be designed or pre-trained, depending on the learning

14

task, such that small output weights will be obtained without adding state
noise or invoking other regularizers.

4 The lazy figure eight

In this section we will train a leaky integrator ESN to generate a slow “figure
eight” pattern in two output neurons, and we will dynamically change the
time constant in the ESN equations to slow down and speed up the generated
pattern.

The “figure 8” generation task is a perennial exercise for RNNs (for ex-
ample, see (Pearlmutter, 1995) (Zegers & Sundareshan, 2003) and references
therein). The task appears not very complicated, because a “figure 8” can be
interpreted as the superposition of a sine (for the x direction) and a cosine of
half the sine’s frequency (for the y direction). However, a closer inspection
of this seemingly innocent task will reveal surprisingly challenging stability
problems.

Since in this section we will be speeding up and slowing down a performing
ESN, we use the network equation (6) as a basis. The gain γ will eventually
be employed to set the “performance speed” of the trained ESN. Since our
figure eight pattern will be generated on a very slow timescale, we will refer
to it as the “lazy eight” (L8) task.

As a teacher signal, we used a discrete-time version of the L8 trajectory
which is centered on the origin, upright, and scaled to fill the [−1, 1] range in
both coordinate directions. One full ride along the eight uses 200 sampling
points. Thus this signal is periodic of length 200. Periodic signals of rugged
shape and modest length (up to about 50 time points) have been trained on
standard ESNs (Jaeger, 2001) with success, but longer, smoothly and slowly
changing targets like a 200-point “lazy” eight we could never master with
standard ESNs. While low training errors can easily be achieved, the trained
nets are apparently always instable when they are run in autonomous patter
generation mode. Here is one sufficient explanation of this phenomenon
(there may be more). When a standard, sigmoid-unit reservoir is driven
by a slow input signal (from the perspective of the reservoir, the feedback
from the output just is a kind of input), it is “adiabatically” following a
trajectory along fixed point attractors of its dynamics which are defined by
the current input. If the input would freeze at a particular value, the network
state would also freeze at the current values (reminiscent of the equilibrium
point theory of biological motor control (Hinder & Milner, 2003).) This
implies that such a network cannot cope with situations like in the center
crossing of the figure 8, because, in sloppy terms, it can’t remember where it

15

came from and thus does not know where to go. Indeed, when one tries to
make a sigmoid-unit network, which had been trained on figure eight data, to
generate that trajectory autonomously, it typically goes haywire immediately
when it reaches the crossing point.

If in contrast we drive a leaky integrator reservoir that has a small gain
γ with a slow input signal, its slow dynamics is not a forced equilibrium
dynamics, but instead can memorize long-past history in its current state,
so at least one reason for the failure of standard ESNs on such tasks is no
longer relevant.

As an baseline study, we trained a leaky integrator ESN on the lazy eight,
using N = 20, ρ = 0.02, a = 0.02, γ = 1.0, sfb = 1. The motivation to use
these settings is explained later. A constant bias input of size 1.0 was fed to
the reservoir with sin = 0.1. The reservoir weight matrix had a connectivity
of 50%. Linear output units were used. The setting ρ = a = 0.02 implies
a maximal effective spectral radius of |λ|max(W̃) = 1.0 in cases where the
spectral radius is equal to the largest eigenvalue. This however is rarely the
case with randomly generated reservoirs, who typically featured an effective
spectral radius between 0.993 and 0.996.

For training, a 3000 step two-dimensional sequence (covering 15 full swings
around the figure eight) was used. In each trial, the various fixed weight ma-
trices were randomly created with the standard scalings described before
Eqn. (11). The ESN was then driven by the training sequence, which was
teacher-forced into the output units. The first 1,000 network states were
discarded to account for the initial transient and the remaining 2,000 ones
were used to compute output weights by linear regression. The trained ESN
was then tested by first teacher-forcing it again for 1,000 steps, after which
it was decoupled from the teacher and run on its own for another 19,000
steps. During this autonomous run, a uniform state noise ν(n) of component
amplitude 0.01 was added to the reservoir neurons to test whether the gen-
erated figure eight was dynamically stable (in the sense of being a periodic
attractor). Figure 3 (top row) shows the results of 8 such runs. None of them
is stable – in fact, among 20 trials which were carried out, none resulted in
a periodic attractor resembling the original figure eight.

At this point some general comments on the stability of trained periodic
pattern generators are in place. First, we want to point out that the figure
eight task – and its stability problem – is related to the “multiple superim-
posed oscillations” (MSO) pattern generation task, which recently has been
variously investigated in an ESN/LSM context (for instance, in the contri-
bution by Xue et al. in this issue). In the MSO task, a one-dimensional
quasi-periodic signal made from the sum of a few incommensurate sines has
to be generated by an ESN. Most observations that follow concerning the L8

16

Figure 3: Lazy 8 test performance. Top row: baseline study, no precau-
tions against instability taken. Center row: output weights computed with a
ridge regression regularizer. Bottom row: yield of the “noise immunization”
method. Each panel shows a plot window of [−1.5, 1.5] in x and y direc-
tion (stretched for plotting). The network-generated trajectory is shown as
a solid black line; the gray figure 8 in the background marks the location
of the teacher eight. The three plots in each column each resulted from the
same ESN which was trained in different ways.

task pertain to the MSO task as well.
Second, generating signals which are superpositions of sines is of course

simple for linear dynamical systems. It presents no difficulty to train a lin-
ear ESN reservoir on the L8 or the MSO task; one will obtain training errors
close to machine precision as long as one has at least two reservoir neurons
per sine component. When the trained network is run as a generator, one will
witness an extremely precise autonomous continuation of the target signal
after the network has been started by a short teacher-forced phase. The im-
pression of perfection is however deceptive. In a linear system, the generated
sine components are not stably phase-coupled, and individually they are not
asymptotically stable oscillations. In the presence of perturbations, both the

17

amplitude and the relative phase of the sine components of the generated sig-
nal will go off on a random walk. This inherent lack of asymptotic stability
is not what one would require from a pattern generation mechanism. In an
ESN context this implies that one has to use nonlinear reservoir dynamics
(or, at least, nonlinear output units).

Third, when training nonlinear reservoir ESNs on the L8 or MSO task,
one can still obtain extremely low training errors, and autonomous continu-
ations of the target signal which initially look perfect. We confess that we
have ourselves been fooled by ESN generated L8 trajectories which looked
perfect for thousands of update cycles. However, when we tested our net-
works for longer timespans, the process invariably at some point went havoc.
Figure 4 gives an example. We suspect (and know in some cases) that a
similarly deceptive initial well-behaviour may have led other investigators of
RNN-based pattern generators to false positive beliefs about their network’s
performance.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−5

0

5

−5 0 5
−5

0

5

Figure 4: Typical behavior of naively trained L8 ESN models. The plot left
shows one of the two output signals (thick gray line: correct; thin black:
network production; x-axis: update cycles) in free-running generation mode.
After an initial period where the network-produced signal is all but identical
to the target, the system’s instability becomes eventually manifest by a tran-
sition into an attractor unrelated to the task. Here the ultimate attractor
has an appealing butterfly shape (panel right).

Fourth, once one grows apprehensive of the stability issue, one starts to
suspect that in fact here there is a rather nontrivial challenge. On the one
hand, we need a nonlinear generating system to achieve asymptotic stabil-
ity. On the other hand, we cannot straightforwardly devise of the nonlinear
generator as a compound made of coupled nonlinear generators of the compo-
nent sines. Coupling nonlinear oscillators of different frequencies is a delicate
maneuvre which is prone to spur interesting, but unwanted, dynamical side-
effects. In other words, while the MSO and L8 signals can be seen as additive
superpositions of sines (in a linear systems view), nonlinear oscillators do not

18

lend themselves to non-interfering “additive” couplings.
In this situation, we investigated two strategies to obtain stable L8 gen-

erators. For one, following a suggestion from J. Steil we computed the out-
put weights with a strong Tikhonov regularization (aka ridge regression, see
(Hastie, Tibshirani, & Friedman, 2001)), using

Wout =
(
(STS + α2I)−1 STT

)T
, (27)

where S is the matrix containing the network-and-input vectors harvested
during training in its rows, T contains the corresponding teacher vectors in
its rows, and α is the regularization coefficient. For α = 0 one gets a standard
linear regression (by the Wiener-Hopf solution). We used a rather large value
of α = 1.

Our other strategy used noise to “immunize” the two component oscil-
lators against interference with each other. According to this strategy, the
output weights for the two output units were trained separately, each need-
ing one run through the training data. For training the first output unit,
a two-dimensional figure eight signal was prepared, which in the first com-
ponent was just the original teacher d1(n), but in the second component
was a mixture (1 − q) d2(n) + q ν(n) of the correct second figure eight sig-
nal d2(n) with a noise signal ν(n). The noise signal ν(n) was created as
a random permutation of the correct second signal and thus had an iden-
tical average amplitude composition. The resulting two-dimensional signal
(d1(n), (1 − q) d2(n) + q ν(n))T was teacher-forced on the two output units
during the state harvesting period. The collected states were used to com-
pute output weights only for the first output unit. Then the respective roles
of the two outputs were reversed, noise was added to the first teacher and
weights for the second set of output weights computed. We used a noise
fraction of q = 0.2. The intuition behind this approach is that when the first
set of output weights is learnt, it is learnt from reservoir states in which the
effects of feedback from the competing second output are blurred by noise,
and vice versa.

Figure 3 (center and bottom rows) illustrates the effect of these two strate-
gies. We have not carried out a painstaking optimization of stability under
either strategy, and we tested only 20 randomly created ESNs. Therefore,
we can only make some qualitative observations:

• Under both strategies roughly half of the 20 runs (8 and 13, respec-
tively) resulted in stable generators (with state noise 0.01 for testing
stability; a weaker noise might have determined a larger number of
stable runs).

19

• The ridge regression method, when it worked successfully, resulted in
more accurate renderings of the target signal than the “noise immu-
nization” method.

• It is not always clear when to classify a trained generator as a successful
solution. Deviations from the target come in many forms which appar-
ently reflect different dynamical mechanisms, as can be seen from the
examples in the bottom row of Figure 3. In view of this diversity, crite-
ria for accepting or rejecting a solution will depend on the application
context.

To conclude this thread, we give the average training errors and average
absolute output weight sizes for the three training setups in the following
table.

train NRMSE stddev av. output weights stddev
naive 0.00046 0.00035 0.77 0.48
regularized 0.0041 0.0019 0.039 0.010
immunized 0.15 0.050 0.36 0.23

While we know how to quantify output accuracy (by MSE) in a way that lends
itself to algorithmic optimization, we do not possess a similar quantifiable
criterium for long-term stability which can be computed with comparable
ease, enabling us to compute a stochastic gradient online. The control pa-
rameter settings sin = 0.1, sfb = 1.0, ρ = a = 0.02 were decided by a coarse
manual search using the “noise immunization” scheme. The optimization
criterium here was long-term stability (checked by running trials), not pre-
cision of short-term testing productions. While the settings for sin and sfb

appeared not to matter too much, variation in ρ and a had important ef-
fects; we only came close to anything looking stable once we used very small
values for these two parameters. Interestingly, very small values for these
parameters also are optimal for small training MSE and testing MSE (the
latter computed only from 300-step iterated predictions without state noise
to prevent the inherent instabilities to become prominent). Figure 5 illus-
trates how the training and testing error and related quantities vary with
a and ρ. The main observations are that (i) throughout almost the entire
a-ρ-range, small to very small NRMSEs are obtained; (ii) a clear optimimum
in training and testing accuracy is located close to zero values of a and ρ
– thus the values ρ = a = 0.02 which were found by aiming for stability
also reflect high accuracy settings; (iii) the most accurate values of a and ρ
correspond to the smallest output weights, and (iv) the curvature which is
an impediment for the gradient-descent optimization schemes from Section

20

3 rises to high values as a and ρ approach their optimum region – which
would effectivly preclude using gradient descent for localizing these optima.
This combination of small output weights, high accuracy and at the same
time, high curvature, is at odds with the intuitions we developed in Section
3, calling for further research.

black = min =
1.173e−005

white = max =
0.0002
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
1.57e−006

white = max =
1.17
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.0188

white = cutoff =
100
(or n.d.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
black = min =
0.0321

0 0.5 1
0

0.2

0.4

0.6

0.8

1

white = cutoff =
1000
(or n.d.)

Figure 5: Various a-ρ-plots, similar to the plots in Section 3, for one of
the 20-unit lazy 8 ESNs, trained with the “noise immunization” scheme.
Other controls were fixed at sin = 0.1, sfb = 1.0. From left to right: (i)
training NRMSE, (ii) testing NRMSE, (iii) average absolute output weights,
(iv) curvature as in the bottom row of Figure 2. Grayscale coding reflects
logarithmic surface heights.

Affording the convenience of a time scale parameter γ, we finally tried
out to speed up and slow down one of the “noise immunization” trained
networks. Figure 6 (left) shows the x and y outputs obtained in a test run
(with again a teacher-forced ramp-up of length 1,000, not plotted) where the
original γ = 1 was first slowly reduced to γ = 0.02, then held at that value
for steps 3000 ≤ n ≤ 7000, then again increased to γ = 1.0 at n = 8500
and finally to γ = 2.0 at n = 10000. The slowdown and speedup works in
principle, but the accuracy of the resulting pattern suffers, as can be seen in
Figure 6 (right). Speeding up beyond γ = 3.0 made the network lose any
visible track of the figure 8 attractor altogether (not shown).

An inspection of Figure 6 reveals that the amplitude of the output sig-
nals diminishes when γ drops, and rises again with γ beyond the correct
amplitude. Our explanation rests on a generic phenomenon in discretizing
dynamics with the Euler approximation: if the stepsize is increased, curva-
ture of the approximated trajectories decreases. In the case of our ESNs,
this means that with larger gains γ (equivalent to larger Euler stepsize) a
reservoir neuron’s trajectory will flatten out, and so will the generated net-
work output, i.e., oscillation amplitudes grow. Using higher-order methods
for discretizing the network dynamics would be a remedy, but the additional
implementation and computational cost may make this inattractive.

21

−1

0

1

0 2000 4000 6000 8000 10000

−1

0

1

−2 0 2

−1

0

1

−2 0 2
−2

−1

0

1

2

Figure 6: Lazy 8 slowdown/speedup performance. Left: the two generated
output signals (x-axis is update cycles). Center: the output figure eight
generated by the original ESN with a constant γ = 1.0. Right: the 2-dim
figure eight plot obtained from the time-warped output signals.

5 The “Japanese Vowels” dataset

5.1 Data and task description

The “Japanese Vowels” (JV) dataset1 is a frequently used benchmark for
time series classification. The data record utterances of nine Japanese male
speakers of the vowel /ae/. Each utterance is represented by 12 LPC cep-
strum coefficients. There are 30 utterances per speaker in the training set,
totaling to 270 samples, and a total of 370 test samples lengths distributed
unevenly over the speakers (ranging from 24 to 88 samples). The utterance
sample lengths range from 7 to 29. Figure 7 gives an impression. The task
is to classify the speakers of the test samples. Various techniques have been
applied to this problem (Kudo, Toyama, & Shimbo, 1999) (Geurts, 2001)
(Barber, 2003) (Strickert, 2004). The last listed obtained the most accu-
rate model known to us, a self-organizing “merge neural gas” neural network
with 1000 neurons, yielding an error rate of 1.6% on the test data, which
corresponds to 6 misclassifications.

5.2 Setup of experiment

We devoted a considerable effort to the JV problem. Bringing down the
test error rate to zero forced us to sharpen our intuitions about setting up
ESNs for classifying isolated short time series. In this subsection we not only
describe the setup that we finally found best, but also share our experience

1Obtainable from http://kdd.ics.uci.edu/, donated by Mineichi Kudo, Jun
Toyama, and Masaru Shimbo

22

http://kdd.ics.uci.edu/

5 10 15 20 25

−1

0

1

2

5 10 15 20 25

−1

0

1

2

5 10 15 20 25

−1

0

1

2

5 10 15 20 25

−1

0

1

2

5 10 15 20 25

−1

0

1

2

5 10 15 20 25

−1

0

1

2

5 10 15 20 25

−1

0

1

2

5 10 15 20 25

−1

0

1

2

5 10 15 20 25

−1

0

1

2

Figure 7: Illustrative samples from the “Japanese Vowels” dataset. Three
recordings from three speakers are shown (one speaker per row). Horizontal
axis: discrete time, vertical axis: LPC cepstrum coefficients.

about setups that came out as inferior – hoping that this may save other
users of ESNs unnecessary work.

5.2.1 Small and sharp or large and soft?

There are numerous reasonable-looking ways how one can linearly transform
the information from the input-excited reservoir into outputs representing
class hypotheses. We tried out four major variations. To provide notation
for a discussion, assume that the ith input sequence has length li, resulting in
li state vectors si(1), . . . , si(li) when the reservoir is driven with this sample
sequence. Here si(n) = [xi(n);ui(n)] is the extended state vector, of dimen-
sion N + K, obtained by joining the reservoir state vector with the input
vector; by default we extend reservoir states with input vectors to feed the
output units (see equation 4). From the information contained in the states
si(1), . . . , si(li) we need to somehow compute 9 class hypotheses (hi

m)m=1,...,9,
giving values between 0 and 1 after inputting the ith sample to the ESN. Let
(di

m)m=1,...,9 i=1,...,270 be the desired training values for the 9 output signals,
that is, di

m = 1 if the ith training sample comes from the mth class, and
di

m = 0 otherwise. We tested the following alternatives to compute hi
m:

1. Use 9 output units (ym)m=1,...,9, connect each of them to the input and

23

reservoir units by an 1 × (N + K) sized output weight vector wm,
and compute wm by linear regression of the targets (di

m) on all si(n),
where i = 1, . . . , 270; n = 1, . . . , li. Upon driving the trained ESN with
a sequence i of length li, average each network output unit signal by
putting hi

m = (
∑

1≤n≤li
ym(n))/li. A refinement of this method, which

gave markedly better results in the JV task, is to drop a fixed number
of initial states from the extended state sequences used in training and
testing, in order to wash out the ESNs initial zero state. – Advan-
tage: Simple and intuitive; would lend itself to tasks where the target
time series are not isolated but embedded in a longer background se-
quence. Disadvantage: Output weights reflect a compromise between
early and late time points in a sequence; this will require large ESNs
to enable a linear separation of classification-relevant state informa-
tion from different time points. Findings: Best results (of about 2 test
misclassifications) achieved with networks of size 1,000 (about 9,000
trained parameters) with regularization by state noise (Jaeger, 2002b);
no clear difference between standard and leaky integrator ESNs.

2. Like before, but use only the last extended state from each sample.
That is, compute wm by linear regression of the targets di

m on all si(li),
where i = 1, . . . , 270. Put hi

m = ym(li). Rationale: due to the ESNs
short-term-memory capacity (Jaeger, 2002a), there is hope that the
last extended state incorporates information from earlier points in the
sequence. – Advantage: Even simpler and in tune with the short-term
memory functionality of ESNs; would lend itself to usage in embed-
ded target detection and classification (the situation we will encounter
in section 6). Disadvantage: When there are time series of markedly
different lengths to cope with (which is here the case), the short-term
memory behavior of the ESN would either have to be adjusted to each
sample according to its length, or one runs danger of optimal reflec-
tion of past information in the last state only for a particular length.
Findings: The poorest-performing design in this list. The lowest test
misclassification numbers we could achieve were about 8 with 50-unit,
leaky integrator ESNs (about 540 trainable parameters). Adjusting the
short-term memory characteristics of ESNs to sequence length by using
leaky-integrator ESNs whose gain γ was scaled inversely proportional
to the sequence length li (such that the ESN ran proportionally slower
on longer sequences) only slightly improved the training and testing
classification errors.

3. Choose a small integer D, partition each state sequence si(n) into D

24

subsequences of equal length, take the last state si(nj) from each of the
D subsequences (nj = j∗li/D, j = 1, . . . , D, interpolate between states
if D is no divisor of li). This gives D extended states per sample, which
reflect a few equally spaced snapshots of the state development when
the ESN reads a sample. Compose D collections of states for computing
D sets of regression weights, where the jth collection (j = 1, . . . , D)
contains the states si(nj), i = 1, . . . , 270. Use these regressions weights
to obtain for each test sample D auxiliary hypotheses hi

mj, where m =
1, . . . , 9; j = 1, . . . , D. Each hi

mj is the vote of the “jth section expert”
for class m. Combine these into hi

m by averaging over j. Advantage:
Even small networks (order of 20 units) are capable of achieving zero
training error, so we can hope for good models with rather few trained
parameters (e.g., D ∗ (N + K) ∗ 9 ≈ 900 for D = 3, N = 20). This
seems promising. Disadvantage: Not transferable to embedded target
sequences. Prone to overfitting. Findings: This is the method by which
we were first able to achieve zero training error easily. We did not
explore this method in more detail but quickly went to the technique
described next, which is even sharper in the sense of needing still fewer
trainable parameters for zero training error.

4. Use D segment-end-states si(nj) per sample, as before. For each train-
ing sample i, concatenate them into a single joined state vector si =
[si(n1); . . . ; s

i(nD)]. Use these 270 vectors to compute 9 regression
weight vectors for the 9 classes, which directly give the hi

m values.
Advantage: Even smaller networks (order of 10 units) are capable of
achieving zero training error, so we can get very small models which
are sharp on the training set. Disadvantage: Same as before. Find-
ings: Because this design is so sharp on the training set, but runs
into overfitting, we trimmed the reservoir size down to a mere 4 units.
These tiny networks (number of trainable df’s: D ∗ (N + K) ∗ 9 ≈ 460
for D = 3, N = 4) achieved the best test error rate under this de-
sign option, with a bit less than 6 misclassifications, which amounts to
the current best from the literature (Strickert, 2004). Standard ESNs
under this design yielded about 1.5 times more test misclassifications
than leaky-integrator ESNs. We attribute this to the in-built smooth-
ing afforded by the integration (check Figure 7 to appreciate the jitter
in the data), and to the slow timescale (relative to sample length) of
the dominating feature dynamics, to which leaky integrator ESNs can
adapt better than standard ESNs. Although the performance did not
come close to the 2 misclassifications we obtained with the first strat-
egy in this list, we found this design very promising because it worked

25

already very well with tiny networks. However, something was still
missing.

5.2.2 Combining classifiers

We spent much time on optimizing single ESNs in various setups, but never
were able to consistently get better than 2 misclassifications. The break-
through came when we joined several of the “design No. 4” networks into a
combined classifier.

There are many reasonable ways of how the class hypotheses generated by
individual classifiers may be combined. Following the tentative advice given
in (Kittler, Hatef, Duin, & Matas, 1998) (Duin, 2002), we opted for the mean
of the individual votes. This combination method has been found to work
well in the cited literature in cases where the individual classifiers are of the
same type and are weak, in the sense of exploiting only (random) subspace
information from the input data. In this scenario, vote combination by taking
the mean has been suggested because (our interpretation) it averages out the
vote fluctuations that are due to the single classifiers’ biases, – hoping that
because the individual classifiers are of the same type, but are basing their
hypotheses on individually, randomly constituted features, the “vote cloud”
centers close to the correct hypothesis.

Specifically, we used randomly created “design No. 4” leaky-integrator
ESNs with 4 neurons and D = 3 as individual classifiers. With only 4
neurons these nets will have markedly different dynamic properties across
their random instantiations (which is not the case for larger ESNs where inter-
network differences become insignificant with growing network size). Thus
each reservoir can be considered a detector for some random, 4-dimensional,
nonlinear, dynamic feature of the input signals. Joining D = 3 extended
state vectors into si, as described for design No. 4, makes each 4-neuron ESN
transform an input sequence into a static (4 + K) ∗ D-dimensional feature
vector, where the contribution from the 4 ∗ D reservoir state components
varies across network instantiations. Training the output weights of such
a network amounts to attempting to linearly separate the 9 classes in the
(4 + K) ∗D-dimensional feature space.

Figure 8 (top right panel) indicates which of the 370 test sequences have
been misclassified by how many from among 1,000 random “design No. 4”
leaky-integrator ESNs. The figure illustrates that many of the samples got
misclassified by one or several of the 1,000 ESNs, justifying our view that here
we have weak classifiers which rely on different subsets of sample properties
for their classification.

26

5.2.3 Data preparation

We slightly transformed the raw JV data, by subtracting from each of the 12
inputs the minimum value this channel took throughout all training samples.
We did so because some of the inputs had a considerable systematic offset.
Feeding such a signal in its raw version would amount to adding a strong
bias constant to this channel, which would effectively shift the sigmoids f
of reservoir units away from their centered position toward their saturation
range.

In addition to the 12 cepstrum coefficients, we always fed a constant bias
input of size 0.1. Furthermore, the input from a training or testing sequence
i was augmented by one further constant Cli = li/lmaxTrain, where lmaxTrain

was the maximum among all sequence lengths in the training set. This input
is indicative of the length of the ith sequence, a piece of information that is
rather characteristic of some of the classes (compare Figure 7). Altogether
this gave us 14-dimensional input vectors.

5.2.4 Optimizing global parameters

We used the network update equation (11) for this case study and thus had
to optimize the global parameters N , a, ρ, sin, and sν . Because our gradient
descent optimization does not yet cover nonstationary, short time series, we
had to resort to manual experimentation to optimize these. To say the truth,
we relied very much on our general confidence that ESN performance is quite
robust with respect to changes in global control parameters, and invested
some care only in the optimization of the leaking rate a, whereas the other
parameters were settled in a rather offhand fashion.

To use a network size of N = 4 was an ad-hoc decision after observing
that individual nets with N = 10 exhibited significant overfitting. We did
not try any other network size below 10.

The input scaling was kept at a value of sin = 1.5 from the preliminary
experiments which we briefly pointed out before. Likewise, the spectral ra-
dius was just kept from our preliminary attempts with single-ESN models
at a value of ρ = 0.2 . We did not insert any state noise (that is, we used
sν = 0) because stability was not at stake in the absence of output feedback;
because the data were noisy in themselves; and because the output weights
we obtained were moderately sized (typical absolute sizes averaged between
1 and 10, with a large variation between individual ESNs).

In order to find a good value for a, we carried out a tenfold cross-validation
on the training data for various values of a, for 25 independently created 4-
unit ESNs. Figure 8 (top left) shows the findings for a = 0.1, 0.15, . . . , 0.5.

27

Error bars indicate the NRMSE standard deviation across the 25 individual
ESNs. This outcome made us choose a value of a = 0.2. As we will see,
this NRMSE is very nonlinearly connected to the ultimate classification per-
formance, and small improvements in NRMSE may give a large benefit in
classification accuracy.

5.2.5 Details of network configuration

We used output units with the tanh squashing function. We linearly trans-
formed the 0-1-teacher values by 0 7→ −0.8, 1 7→ 0.8 to exploit the range
of this squashing function (for NRMSE calculations and plots we undid this
transformation wherever network output values were concerned). The reser-
voir and input connection weight matrices were fully connected, with entries
drawn from a uniform distribution over [−1, 1]. The reservoir weight matrix
W was subsequently scaled to a spectral radius of 1, to be scaled by ρ = 0.2
in our update equation (11). In each run of a network with a training or
testing sample, the initial network state was zero.

0.1 0.2 0.3 0.4 0.5
0.31

0.32

0.33

0.34

a

N
R

M
S

E

0 100 200 300 400
0

1

2

3

test sample Nr

lo
g 10

(N
r

of
 m

is
cl

as
s.

 +
 1

)

1 5 10 20 50 100 200 5001000
0.2

0.25

0.3

0.35

0.4

Nr of combined classifiers

N
R

M
S

E

NRMSE train
NRMSE test

1 5 10 20 50 100 200 5001000
−2

0

2

4

6

Nr of combined classifiers

N
r

of
 m

is
cl

as
s. MisClass train

MisClass test

Figure 8: Diagnostics of the JV task. Top left: cross-validation NRMSE for
optimizing the leaking rate a. Top right: Distribution of misclassified test
samples, summed over 1,000 individual nets. y-scaling is logarithmic to base
e. Bottom left: average NRMSE for varying Nrs of combined ESNs. Error
bars indicate stddev. Bottom right: Average test misclassifications. Again,
error bars indicate stddev. For details see text.

28

5.3 Results

We trained 1,000 4-neuron ESNs individually on the training data, then
partitioned the trained networks into sets of size 1, 2, 5, 10, 20, 50, 100,
200, 500, 1000, obtaining 1,000 individual classifiers, 500 classifiers which
combined 2 ESNs, etc., up to one combined classifer made from all 1,000
ESNs.

Figure 8 comprises the performance we observed for these classifiers. The
average number of test misclassifications for individual ESNs was about 5.4
with a surprisingly small standard deviation. It dropped below 1.0 when 20
ESNs were combined, then steadily went down further until zero misclas-
sifications was reached by the collectives sized 500 and 1,000. The mean
training misclassification number was always exactly 1 except for the indi-
vidual ESNs. An inspection of data revealed that it was always the same
training sample (incidentally, the last of the 270) which was misclassified.

6 Time warping invariant echo state networks

Time warping of input patterns is a common problem when recognizing hu-
man generated input or dealing with data artificially transformed into time
series. The most widely used technique for dealing with time-warped patterns
is probably dynamic time warping (DTW) (Itakura, 1975) and its modifica-
tions. It is based on finding the cheapest (w.r.t. some cost function) mapping
between the observed signal and a prototype pattern. The price of the map-
ping is then taken as a classification criterion. Another common approach
to time-warped recognition uses hidden Markov models (HMMs) (Rabiner,
1990). The core idea here is that HMMs can “idle” in a hidden state and thus
adapt to changes in the speed of an input signal. An interesting approach
of combining HMMs and neural networks is proposed in (Levin, Pieraccini,
& Bocchieri, 1992), where neurons that time-warp their input to match it to
its weights optimally are introduced.

A simple way of directly applying RNNs for time-warped time series clas-
sification was presented in Sun, Chen, and Lee (1993). We take up the basic
idea from that work to derive an effective method for dynamic recognition of
time-warped patterns, based on leaky-integrator ESNs.

29

6.1 Time warping invariance

Intuitively, time warping can be understood as variations in the “speed” of a
process. For discrete-time signals obtained by sampling from a continuous-
time series it can alternatively be understood as variation in the sampling
rate. By definition two signals α(t) and β(t) are connected by an approximate
continuous time warping (τ1, τ2), if τ1, τ2 are strictly increasing functions on
[0, T], and α(τ1(t)) ∼= β(τ2(t)) for 0 ≤ t ≤ T . We can choose one signal, say
α(t), as a reference and all signals that are connected with it by some time
warping (e.g. β(t)) call (time-)warped versions of α(t). We will also refer to
a time warping (τ1, τ2) as a single time warping (function) τ(t) = τ2(τ

−1
1 (t))

which connects the two time series by β(t) = α(τ(t)).
We will deal with the problem of recognition (detection plus classification)

of time-warped patterns in a background signal, and follow the approach
originally proposed in (Sun et al., 1993). This method does not look for a time
warping that could map an observed signal to a target pattern. Time warping
invariance is achieved by normalizing time dependence of the state variables
with respect to the length of trajectory of the input signal in its phase space.
In other words, the input signal is considered in a “pseudo-time” domain,
where “time span” between two subsequent pseudo time steps is proportional
to the metric distance in the input signal between these time steps. As a
consequence, input signals will be changing with a constant metric rate in
this “pseudo-time” domain. In continuous time, for a k-dimensional input
signal u(t), u : R+ → Rk we can define such a time warping τ ′u : R+ → R+

by

dτ ′u(t)/dt = b · ‖du(t)/dt‖ , (28)

where b is a constant factor. Note, that the time warping function τ ′u de-
pends on the signal u which it is warping. Then the signal warped by τ ′u
(i.e. in the “pseudo-time” domain) becomes u(τ ′u(t)), and as a consequence
‖du(τ ′u(t))/dt‖ = 1/b, i.e. the k-dimensional input vector u(τ ′u(t)) changes
with a constant metric rate equal to 1/b in this domain. Furthermore, if two
signals u1(t) and u2(t) are connected by a time warping τ , then time warping
them with τ ′u1

and τ ′u2
respectively results in u1(τ

′
u1

(t)) = u2(τ
′
u2

(t)), which
is what we mean by time warping invariance (see Figure 9 for the graphical
interpretation of the k = 1 case).

A continuous-time processing device governed by an ODE with a time
constant c could be made invariant against time warping in its input signal
u(t), if for any given input it could vary its processing speed according to τ ′u(t)
by changing the time constant c in the equations describing its dynamics.
This is an alternative to time-un-warping the input signal u(t) itself. Leaky

30

0 20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

time n

u(
n)

No time warping, l = 0

0 20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

"pseudotime" τ’u(n)

u(
τ’ u(n

))

 ↓ time warping invariant interpretation ↓

0 20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

time n

u(
n)

Time warping l = 0.7

0 20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

"pseudotime" τ’u(n)

u(
τ’ u(n

))

 ↓ time warping invariant interpretation ↓

≠

≈

Figure 9: A time warping invariant interpretation of two one-dimensional sig-
nals connected by a time warping. Top left: reference signal with l = 0. Top
right: a version of the same with l = 0.7. Bottom panels: transformations
from the top panel sequences into the “pseudotime” domain τ ′u(n) according
to (28). We can observe that for one-dimensional signals the transformation
to warping-invariant pseudo-time causes a significant loss of information –
the signal u(τ ′u(n)) can be fully described by the sequence of values at local
minimums and maximums of u(n).

integrator neurons offer their service at this point. Considering first the
continuous-time version of leaky-integrator neurons (equation (1)), we would
use the inverse time constant 1/c to speed up and slow down the network,
by making it time-varying according to (28). Concretely, we would set

c(t) = (b · ‖du(t)/dt‖)−1 (29)

If we have discrete sampled input u(n), we use the discrete-time approxima-
tion from equation (6) and make the gain γ time-varying by

γ(n) = b · ‖u(n)− u(n− 1)‖ . (30)

6.2 Data, learning task, and ESN setup

We prepared continuous-time time series of various dimensions, consisting
of a red-noise background signal into which many copies of a short target

31

pattern were smoothly embedded. The task is to recognize the target pat-
tern in the presence of various degrees of time warping applied to the input
sequences.

Specifically, a red-noise background signal g(t) was obtained by filtering
out 60% of the higher frequencies from a [−0.5, 0.5]k uniformly distributed
white noise signal. A short target sequence p(t) of duration Tp with a sim-
ilar frequency makeup was generated and smoothly embedded into g(t) at
random locations, using suitable soft windowing techniques for the embed-
ding to make sure that no novel (high) frequency components were created in
the process (details in Lukoševičius et al. (2006)). This embedding yielded
continuous-time input signals u(t) which were subsequently sampled and
time-warped to obtain discrete-time inputs u(n).

The (1-dimensional) desired output signal d(t) was constructed by placing
narrow Gaussians on a background zero signal, at the times where the target
patterns end. The height of the Gaussians is scaled to 1. Figure 10 gives an
impression of our data.

0 50 100 150 200 250 300 350 400
−0.2

−0.1

0

0.1

0.2
No time warping, l = 0

0 50 100 150 200 250 300 350 400
−0.2

−0.1

0

0.1

0.2

n

Time warping l = 0.7 yteacher(n) u(n)

Figure 10: A fragment of a one-dimensional input and corresponding teacher
signal without and with time warping.

Discrete time time-warped observations u(n) of the process u(t) were
drawn as u(n) = u(τ(n)), where τ : N → R+ fulfilled both time warping and
discretization functions. Both u(t) and the corresponding teacher d(t) were
discretized/time-warped together. More specifically, we used

τ(n) = (n + 10 · l sin(0.1n)), (31)

where l ∈ [0, 1] is the level of time warping: τ(n) is a straight line (no time
warping) when l = 0, and is a nondecreasing function as long as l ≤ 1. In the

32

extreme case of l = 1, time “stands still” at some points in the trajectory. In
the obtained signals u(n) the pattern duration Tp on average corresponded
to 20 time steps.

The learning task for the ESN is to predict d(n) from u(n). In each
network-training-testing trial, the warping level l on the training data was
the same as on the test data. Training sequences were of length 3,000, of
which the first 1,000 were discarded before computing the output weights in
order to wash out initial network transients. For testing, sequences of length
500 were used throughout.

We used leaky-integrator ESNs with 50 units. The reservoir weight matrix
was randomly created with a connectivity of 20%; nonzero weights were
drawn from a uniform distribution centered on 0 and then globally rescaled to
yield a reservoir weight matrix W with unit spectral radius. We augmented
inputs u(n) by an additional constant bias signal of size 0.01, yielding a
K = k + 1 dimensional input overall. Input weights were randomly sampled
from a uniform distribution over [−1, 1]. There were no output feedbacks.

The spectral radius ρ and the leaking rate a were manually optimized to
values of ρ = 0.3, a = 0.3 on inputs without time-warping. Likewise, on data
without time-warping we determined by manual search an optimal reference
value for the gain of γ0 = 1.2.

Turning to time-warped data, for each time series we set the constant
b from (28) such that on average a gain of 〈γ(n)〉 = 1.2 would result from
running the ESN with a dynamic gain according to (30), that is, for a given
input sequence we put

b = 1.2/〈‖u(n)− u(n− 1)‖〉. (32)

This results in the following update equation:

x(n + 1) = (1− aγ(n)) x(n) + γ(n) f(Winu(n + 1) + Wx(n)), (33)

where γ(n) = b · ‖u(n)− u(n− 1)‖. As a safety catch, the range of γ(n) was
bounded by a hard limit to satisfy the constraint from equation (5), that is,
γ(n) was limited to values of at most 1/a.

6.3 Results

We compared the performance of three types of ESNs: (i) leaky integra-
tor ESNs with fixed γ = 1.2; (ii) time-warping-invariant ESNs (TWIESNs)
according to equation (28); and for comparison we also constructed (iii) a
version of a leaky integrator ESNs which unwarped the signals in an optimal

33

way, using the information (which in real life is unavailable) of the time warp-
ing τ : this ESN version has γ(n) externally set to min(b[τ(n)−τ(n−1)], 1/a).
Let us call this type of networks, “oracle” ESNs.

For each run, we computed two performance criteria: the NRMSE of net-
work output vs. d(n), and the ratio of q of correctly recognized targets. To
determine q, each connected interval of n for which y(n) > h corresponds
to one claimed target recognition. Any such event is considered a correct
recognition if the intervals of n where y(n) > h and yteacher(n) > h overlap.
The value of h was optimized by maximizing q over the training data. Then,
q is evaluated as Nr. of correct recognitions / (Nr. of targets in test sequence
+ Nr. of claimed recognitions − Nr. of correct recognitions). Figure 11 sum-
marizes the findings for k = 1, 3, 10, 30. Each plot renders the average values
from 100 runs with independently created ESNs.

The main observations are the following.

• If k and l are small, the fixed leaky integrator ESNs do better than
TWIESNs. This can be explained by the loss of temporal information
induced by the transformation to pseudotime.

• If k or l is large, TWIESNs outperform fixed leaky integrator ESNs, and
indeed come close to oracle ESNs when k is 10 or larger. This means
that the purely temporal information contributes little to the recog-
nizability of patterns, as opposed to the “structural” (time-scaling-
invariant) information in the input sequences. Since in real-life appli-
cations where time warping is an issue (for instance, speech or hand-
writing recognition), inputs are typically feature vectors of sizes beyond
10, our approach seems to hold some promise.

• NRMSE and recognition rate q remain almost, but not quite constant
for TWIESNs as l varies from zero to one. Naively, one should expect
that q is not affected at all by l, because TWIESNs should “see” inden-
tical pseudo-time series across all l, as in the bottom panels of Figure
9. Indeed, this is not exactly the case: when γ(n) becomes large, the
reservoir dynamics is not an exact sped-up version of a slower dynam-
ics, due to inaccuracies of the Euler discretization. This explains the
systematic, slight increase in NRMSE as l grows. A remedy would
be to use higher-order discrete approximations of the continuous-time
leaky integrator dynamics from (1), for instance Runge-Kutta approx-
imations.

34

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 M
S

E

k = 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Q
ua

lit
y

of
 r

ec
og

ni
tio

n
q

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
k = 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
S

E

k = 10

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Level of time warping l

Q
ua

lit
y

of
 r

ec
og

ni
tio

n
q

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
k = 30

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

Level of time warping l

classical ESN TWIESN explicit time "unwarping"

Figure 11: Performance of fixed-γ ESNs (dashed), oracle ESNs (dotted) and
TWIESNs (solid), for input dimensions k = 1, 3, 10 and 30, and different
levels of time warping l (x-axes). Bold lines: test performance, thin lines:
performance on training data. For details see text.

7 Conclusion

Leaky integrator ESNs are only slightly more complicated to implement and
to use than standard ESNs and appear to us as quite flexible devices when
timescale phenomena are involved, where standard ESNs run into difficul-
ties. Caution is however advised when simple Euler approximations to the
continuous-time leaky integrator dynamics are used.

Two questions were encountered which we consider to be of longer-lasting
importance:

• Find computationally efficient ways to optimize the global scaling pa-
rameters of ESNs. Specifically, naive stochastic gradient descent ap-
proaches, as introduced in this paper, suffer from poor stability prop-

35

erties, which renders them impractical in many cases.

• Analyse conditions and provide practical training schemes that ensure
stability of ESNs trained as complex pattern generators.

Finally we want to point out a question which we think would concern any
modeling approach to nonlinear dynamics, whether based on RNNs or not.
Humans can to some extent adjust the speed (and amplitude) of generated
motor (or vocal) trajectories. For instance, they can speak faster or slower,
or perform a gesture at different velocity. What could an underlying neu-
ral mechanism be? We can’t think of a biologically plausible mechanism by
which biological brains could dynamically adjust the physical time constants
of their neurons in a quick, adaptive, and homogeneous fashion, in the way
we can adjust γ in our equations. However, biological brains can apparently
adjust gains of neural connection pathways. It would be an interesting chal-
lenge for theoretical neuroscience to devise of dynamical or RNN mechanisms
by which trajectories can be sped up or slowed down, not by directly changing
time constants but instead by changing connection (coupling) gains.

A Proof of proposition 1

For any two states x(n),x′(n) the following holds:

‖x(n)− x′(n)‖ =

= ‖(1− a
δ

c
)(x(n)− x′(n)) +

+
δ

c

(
f(Winu(n + 1) + Wx(n))− f(Winu(n + 1) + Wx′(n))

)
‖

≤ (1− a
δ

c
)‖x(n)− x′(n)‖+

+
δ

c
‖f(Winu(n + 1) + Wx(n))− f(Winu(n + 1) + Wx′(n))‖

≤ (1− a
δ

c
)‖x(n)− x′(n)‖+

δ

c
‖Wx(n)−Wx′(n)‖

≤ (1− δ

c
(a− σmax)) ‖x(n)− x′(n)‖

Thus, |1 − δ
c

(a − σmax)| is a global Lipschitz rate by which any two states
approach each other in a network update.

36

Acknowledgments

The work on time warping invariant ESNs reported here was supported by
student contract grants for ML and DP from Planet intelligent systems
GmbH, Raben Steinfeld, Germany. The authors would also like to thank
five (!) anonymous reviewers of the NIPS 2005 conference, who helped to
improve the presentation of Section 6, which once was a NIPS submission.
The treatment of the lazy eight task owes much to discussions with J. Steil,
R. Linsker, J. Principe and B. Schrauwen. The authors also express their
gratitude toward two anonymous reviewers of the Neural Networks Journal
for detailed and helpful commentaries. International patents for the basic
ESN architecture and training algorithms have been claimed by Fraunhofer
IAIS www.iais.fraunhofer.de.

References

Barber, D. (2003). Dynamic Bayesian networks with deterministic latent ta-
bles. In Proc. NIPS 2003. (http://www.anc.ed.ac.uk/∼dbarber/publi-
cations/barber nips dethidden.pdf)

Buehner, M., & Young, P. (2006). A tighter bound for the echo state property.
IEEE Transactions on Neural Networks, 17 (3), 820- 824.

Buonomano, D. V. (2005). A learning rule for the emergence
of stable dynamics and timing in recurrent networks. Jour-
nal of Neurophysiology, 94, 2275-2283. (http://www.neuro-
bio.ucla.edu/∼dbuono/BuonoJNphy05.pdf)

Duin, R. P. W. (2002). The combining classifier: To train or not
to train? In R. Kasturi, D. Laurendeau, & C. Suen (Eds.),
Proceedings 16th International Conference on Pattern Recognition
(ICPR16), vol. II (p. 765-770). IEEE Computer Society Press.
(http://ict.ewi.tudelft.nl/∼duin/papers/icpr 02 trainedcc.pdf)

Farhang-Boroujeny, B. (1998). Adaptive filters: Theory and applications.
Wiley.

Geurts, P. (2001). Pattern extraction for time series classification.
In L. De Raedt & A. Siebes (Eds.), Proc. PKDD 2001 (p. 115-
127). (http://www.montefiore.ulg.ac.be/∼geurts/publications/geurts-
pkdd2001.pdf)

37

www.iais.fraunhofer.de

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical
learning. Springer Verlag.

Hinder, M. R., & Milner, T. E. (2003). The case for an internal dynam-
ics model versus equilibrium point control in human movement. J.
Physiol., 549 (3), 953-963. (http://www.sfu.ca/∼tmilner/953.pdf)

Itakura, F. (1975). Minimum prediction residual principle applied to speech
recognition. IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, 23 (1), 67–72.

Jaeger, H. (2001). The ”echo state” approach to analysing and training recur-
rent neural networks (GMD Report No. 148). GMD - German National
Research Institute for Computer Science. (http://www.faculty.iu-
bremen.de/hjaeger/pubs/EchoStatesTechRep.pdf)

Jaeger, H. (2002a). Short term memory in echo state networks
(GMD-Report No. 152). GMD - German National Research Insti-
tute for Computer Science. (http://www.faculty.iu-bremen.de/hjae-
ger/pubs/STMEchoStatesTechRep.pdf.)

Jaeger, H. (2002b). Tutorial on training recurrent neural networks, cover-
ing BPPT, RTRL, EKF and the echo state network approach (GMD
Report No. 159). Fraunhofer Institute AIS. (http://www.faculty.iu-
bremen.de/hjaeger/pubs/ESNTutorial.pdf)

Jaeger, H. (2003). Adaptive nonlinear system identification with echo
state networks. In S. Becker, S. Thrun, & K. Obermayer (Eds.),
Advances in Neural Information Processing Systems 15 (p. 593-600).
MIT Press, Cambridge, MA. (http://www.faculty.iu-bremen.de/hjae-
ger/pubs/esn NIPS02)

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predict-
ing chaotic systems and saving energy in wireless communica-
tion. Science, 304, 78-80. (http://www.faculty.iu-bremen.de/hjae-
ger/pubs/ESNScience04.pdf)

Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998). On combin-
ing classifiers. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20 (3), 226-239. (http://ict.ewi.tudelft.nl/∼duin/pa-
pers/pami 98 ccomb.pdf)

38

Kudo, M., Toyama, J., & Shimbo, M. (1999). Multidimensional curve clas-
sification using passing-through regions. Pattern Recognition Letters,
20 (11), 1103-1111.

Levin, E., Pieraccini, R., & Bocchieri, E. (1992). Time-warping network:
A hybrid framework for speech recognition. In Advances in Neural
Information Processing Systems 4, [NIPS Conference] (pp. 151–158).

Lukoševičius, M., Popovici, D., Jaeger, H., & Siewert, U. (2006). Time
warping invariant echo state networks (IUB Technical Report No. 2).
International University Bremen. (http://www.iu-bremen.de/im-
peria/md/content/groups/research/techreports/twiesn iubtechre-
port.pdf.)

Maass, W., Joshi, P., & Sontag, E. (2006). Computational aspects of
feedback in neural circuits. PLOS Computational Biology, in press.
(http://www.igi.tugraz.at/maass/psfiles/168 v6web.pdf)

Maass, W., Natschlaeger, T., & Markram, H. (2002). Real-time com-
puting without stable states: A new framework for neural computa-
tion based on perturbations. Neural Computation, 14 (11), 2531-2560.
(http://www.cis.tugraz.at/igi/maass/psfiles/LSM-v106.pdf)

Mauk, M., & Buonomano, D. (2004). The neural basis of temporal process-
ing. Annu. Rev. Neurosci., 27, 307-340.

M.C., Xu, D., & Principe, J. (accepted 2006). Analysis and design of echo
state networks for function approximation. Neural Computation, to
appear.

Pearlmutter, B. (1995). Gradient calculation for dynamic recurrent neural
networks: a survey. IEEE Trans. on Neural Networks, 6 (5), 1212-1228.
(http://www.bcl.hamilton.ie/∼bap/papers/ieee-dynnn-draft.ps.gz)

Rabiner, L. (1990). A tutorial on hidden Markov models and selected appli-
cations in speech recognition. In A. Waibel & K.-F. Lee (Eds.), Read-
ings in speech recognition (p. 267-296). Morgan Kaufmann, San Mateo.
(Reprinted from Proceedings of the IEEE 77 (2), 257-286 (1989))

Schiller, U., & Steil, J. J. (2005). Analyzing the weight dynam-
ics of recurrent learning algorithms. Neurocomputing, 63C, 5-23.
(http://www.techfak.uni-bielefeld.de/∼jsteil/publications.html)

39

Schmidhuber, J., Gomez, F., Wierstra, D., & Gagliolo, M. (2006, in press).
Training recurrent networks by evolino. Neural Computation.

Stanley, G., Li, F., & Dan, Y. (1999). Reconstruction of natural scenes from
ensemble responses in the lateral genicualate nucleus. J. Neurosci.,
19 (18), 8036-8042. (http://people.deas.harvard.edu/∼gstanley/publi-
cations/stanley dan 1999.pdf)

Strickert, M. (2004). Self-organizing neural networks for sequence
processing. Phd thesis, Univ. of Osnabrück, Dpt. of Com-
puter Science. (http://elib.ub.uni-osnabrueck.de/publications/diss/E-
Diss384 thesis.pdf)

Sun, G.-Z., Chen, H.-H., & Lee, Y.-C. (1993). Time warping invariant neural
networks. In Advances in Neural Information Processing Systems 5,
[NIPS Conference] (pp. 180–187). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Zant, T. van der, Becanovic, V., Ishii, K., Kobialka, H.-U., & Plöger,
P. (2004). Finding good echo state networks to control an un-
derwater robot using evolutionary computations. In CD-ROM Proc.
IAV 2004 - The 5th Symposium on Intelligent Autonomous Ve-
hicles. (http://www.ais.fraunhofer.de/∼vlatko/Publications/Fin-
ding good esn FINAL PhotoCopyReady.pdf)

Zegers, P., & Sundareshan, M. K. (2003). Trajectory generation and mod-
ulation using dynamic neural networks. IEEE Transactions on Neural
Networks, 14 (3), 520 - 533.

40

	Introduction
	Basic mathematical properties
	System equations
	Stability: the echo state property

	Optimizing the global parameters
	The lazy figure eight
	The ``Japanese Vowels'' dataset
	Data and task description
	Setup of experiment
	Small and sharp or large and soft?
	Combining classifiers
	Data preparation
	Optimizing global parameters
	Details of network configuration

	Results

	Time warping invariant echo state networks
	Time warping invariance
	Data, learning task, and ESN setup
	Results

	Conclusion
	Proof of proposition 1
	References

