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Abstract—Even though algorithmic music has been around the 

world since the old days, it has never attracted as many 

researchers as in the recent years. To our knowledge it existed in 

Iran back in the Middle Ages and in Europe during the Age of 

Enlightenment. Though the form has changed and it has grown 

layers of complexity, the very foundations of the algorithm that 

generates musical compositions have not changed, i.e. most of 

them are based on structures of fortuity. Additionally, models that 

are able to learn have been discovered allowing us to imitate the 

music of the incredible artists throughout history. The thought 

alone is crazy to think of and seems to be from the sci-fi. In this 

paper, a research trying to find the best model of an echo state 

network in order to mimic the music of the legendary Wolfgang 

Amadeus Mozart has been carried out. As it turns out, the best 

models are the ones that rely on long-term dependencies. 

Keywords—algorithtmic composition, echo state network, MIDI, 

recurrent neural network 

I.  INTRODUCTION 

Algorithmic music is by no means a new trend in our techy 
world. In fact, three Iranian brothers collectively known as Banu 
Musa were successfully devising automatic and even 
programmable musical instruments back in 850 AD [1]. They 
were most likely invited to the best parties in the city back then. 
Moreover, an algorithmic game circulated around Europe since 
the Enlightenment Age, i.e. the 18th century in a form of 
Musikalishes Würfelspiel. It has been attributed to Mozart in a 
form of myth, yet never proven to be true. This game took small 
fragments of music and combined them in a random order by 
chance, often tossing a dice [2]. Since then, the scope of the 
algorithmic music has augmented layers of complexity, but the 
foundations have not changed. The main difference is that now 
we do not toss a dice, but run a random number generation 
function in our favourite programming language. 

In this article we are trying to imitate classical piano music. 
For a quantitative rather than qualitative analysis only one 
composer was chosen. Mozart has been opted for his 
indisputable genius and some haphazardness.  

Rather than working with sound signals, we chose to work 
with notes for several reasons. Firstly, it is a lot less intricate. 
Therefore, it is a lot easier for us to understand and analyse it as 
well as it is for the algorithm in the means of computational 
resources and dependency on previous notes. In the note level 
we are also able to compare it with the musical theory. And it 
helps us stay in the realm of classical music as well. 

Furthermore, we are lucky enough to have the MIDI 
(musical instrument digital interface) protocol for a .mid is a 
musical file format that captures the notes, the times piano keys 
were pressed and released, how strong they were pressed etc. 
MIDI supports 128 notes whereas general pianos usually 
provide 88 keys. 

Musical composition has been one of the long term goals of 
artificial intelligence (AI) [3]. Broadly speaking, music 
generation by AI is based on the principle that musical styles are 
in effect complex systems of probabilistic relationships, as 
defined by the musicologist Leonard B. Meyer. In the early days, 
symbolic AI methods and specific grammars describing a set of 
rules had driven the composition [4], [5]. Then these methods 
were significantly improved by evolutionary algorithms in a 
variety of ways [6] as represented by the famous EMI project 
[7]. More recently, statistics in the form of Markov chains and 
hidden Markov models (HMM) played a major part in 
algorithmic composition [8]. Next to this development was the 
rapid rise of neural networks (NN) due to the growing capacity 
of computational powers. It has made a remarkable process not 
only in the AI world but also in music composition [9]. 

As music is a sequence of notes, a sequential model was 
chosen to train on Mozart’s music. Markov models are not very 
suitable for this task due to their monophony (although it is 
possible to design a system for polyphonic music as well). 
Currently, the cutting-edge approach to generative music 
modelling is based on recurrent networks [4], [10], [11] like the 
long short-term memory (LSTM) network. Traditional recurrent 
neural networks (RNN) lack long-term dependency, thus are 
able to generate melody yet no harmony, i.e. the music gets stuck 
at some point or turns out to be repetitive. LSTMs are better in 
this case since they have a stronger long-term dependency. 
Though fine-tuned LSTM algorithms are able to overcome the 
obstacles that traditional RNN algorithms confront, they still 
face the same problems in a way that the music lacks the theme, 
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i.e. the big picture. Long short-term memory algorithms have 
been extensively studied in the recent years. Besides, LSTM 
algorithms are also heavy and require a lot of resources. We have 
been looking for a light-weight solution.  

For these reasons, we chose to work with a type of recurrent 
neural networks – echo state network (ESN) – that have barely 
been researched for musical composition. 

II. DATA & TOOLS 

Musical data were downloaded in the format of .mid from 

the website http://www.piano-midi.de/. From now on MIDI and 

.mid will be used interchangeably meaning the same, i.e. the file 

format unless stated otherwise, e.g. MIDI protocol. In total, 21 

pieces by Mozart were gathered (all that are found on the 

website). 

MIDI format is a sequence of notes (and commands such as 

tempo change and sound perturbations) whereas the time 

difference is represented in ticks. A quarter note is usually 480 

or 960 ticks but that depends on the resolution. Thus, a full note 

or, in other words, a tact is 1920 or 3840 ticks respectively. 

Later on, the data had to be transformed in a format that is 

easier to read, maintain and process. Hence, it was read and 

transformed into notes as messages into a .csv (comma 

separated values) format. 

Every message consists of information of this type: 

 note pitch 

 on tick 

 off tick 

 length 

The length parameter is not in the MIDI file and had been 

artificially generated for the purpose of data analysis. 

Table I shows the types of information as well as their 

ranges in a message. Note pitch ranges from 0 to 127, thus a 

byte is more than enough to store it. The beginning and the end 

of a note tick is undetermined and can grow to infinity when the 

data grows. Length parameter is purely the difference between 

on and off ticks. It may grow to a large number due to software 

bugs or a divergence of the algorithm, but usually it shall stay 

in the realm of classical music and get a value up to a full note. 

TABLE I.  INFORMATION INSIDE A MESSAGE 

Info Note pitch On tick Off tick Length 

Type byte long long integer 
Range 0-127 0-infinity 1-infinity 1-full note 

A message in MIDI that signifies the event of pressing a note 

is the note_on message. It represents an event when a note is 

released as well, only the velocity then is equal to zero. The 

algorithm (Fig. 1) that was applied for treatment of raw MIDI 

files looks as following: 
Fig. 1. Algorithm of raw MIDI file treatment into a CSV file 

The programming language of choice was Python due to its 

recognition in data science and machine learning among 

scientists and developers. Also, due to the many data processing 

as well as machine learning libraries although none of the 

machine learning libraries were used for this work. For the 

purpose of .mid processing, Mido library was chosen [12]. 

Machine learning algorithms perform better under more 

data. We could have just taken in all of the composers from the 

website full of classical MIDI files, but we chose only one for 

the purpose of thorough analysis. Despite the fact that our 

choice was only Mozart’s music and that had given us only 21 

pieces of scores, this resulted in around 68 thousand notes. 

III. INITIAL DATA ANALYSIS 

Prior to the research, an analysis of the data was performed 
based on the distribution of note pitches as well as their lengths. 
As we can clearly see in Fig. 2, there are 2 maximums. One is of 
a higher pitch while the other is of a quite lower pitch. This is 
most probably due to the fact that piano is played by 2 hands and 
that the left hand usually wanders in the region of lower pitch 
notes whilst the right hand sits in the region of higher pitch notes. 

 

Fig. 2. Distribution of Mozart notes. One can obviously spot 2 maximums of a 

higher and a lower pitch. This is most likely due to the fact that piano is played 

by 2 hands and that the left hand usually wanders in the region of lower pitch 

notes whilst the right hand sits in the region of higher pitches. 

These data are not so much relevant for our research, but 
provide us with insights such as it would make perfect sense to 
study the hands in more detail. We ought to bolster our research 
either by adding an additional dimension of the hand or by 
having 2 different outputs for each hand by the network. This 
analysis is also useful for future comparison and judgment of 
generated music. 

Analysis of lengths (Fig. 3) provide us only one maximum, 
meaning both hands share the same maximum or that the note 
lengths of one hand are very dispersed. iterate through the messages: 

--check if it is a ‘note_on’ type of message: 

----if velocity > 0: 

------take the time of the note that was pressed 

----else if velocity equals 0: 

------check if the actual note was pressed: 

--------release the note 

--------measure the length of the note 

----------append the note as a message to the CSV 

http://www.piano-midi.de/
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Fig. 3. Distribution of Mozart note lengths. 

IV. NETWORK 

Echo state networks supply an architecture and principles of 
supervised learning for recurrent neural networks. The idea 
behind an ESN is to drive a large, random and fixed reservoir of 
neurons with the input signal (Fig. 4). Thence, inducing each 
neuron within it with a nonlinear response signal. After, 
combine the desirable output data by a trainable linear 
combination of all of these response signals [13]. In practice, it 
is important to keep in mind that the reservoir acts not only as a 
nonlinear expansion, but also as a memory input at the same time 
[14]. 

Echo state network may be tuned by altering the following 
parameters: 

 leaking rate  

 input scaling 

 spectral radius 

Leaking rate of the network can be regarded as the speed of 
the reservoir update dynamics in discrete time. 

Another key parameter to optimize an ESN is the input 
scaling. It multiplies the input weight matrix Win by its value 
either strengthening the input weights or diminishing them.

 

Fig. 4. Design of an echo state network [14]. Here u is the input data, Win is the 

input weights matrix, x is the reservoir nodes and their outputs, W is their 

weights, Wout is the output weights and y is the output data. 

Spectral radius is one of the most global parameters of an 
ESN, i.e. the maximum absolute eigenvalue of the reservoir 
weights matrix W. It scales the matrix W, or in alternate words, 
scales the width of the distribution of its nonzero elements [14]. 

In order to avoid overfitting, regularization is used. 

The number of neurons inside the reservoir has been opted 
be equal to 1000. 

Programming code for ESN has been adapted from [15] and 
expanded for multidimensional input data as well as output. 

V. EXPERIMENTAL SETUP 

Research has been accomplished in a manner that can be 
seen in Fig. 6. First of all, music was accumulated in .mid format 
(hex code). As stated before, it was processed by Mido library 
and stored in a .csv format in a form of messages that carry the 
information of notes as the pitch number, on and off ticks and 
length. 

Then the messages were read from the .csv file and 
quantized. Quantization was performed for the beginning and 
the end of the notes in the following way. A quantization unit of 
60 ticks (represents a 32nd of a note) was chosen. Next, if the 
residual value of the tick was less than half the quantization unit, 
it was reduced by the residual. If the residual value was equal or 
higher than half of the quantization unit, i.e. 30 ticks, it was 
increased by the difference between the quantization unit and the 
residual. The lengths of notes were recalculated afterwards. 

In Fig. 5 we can see the distribution of the notes after 
quantization. Hereby, the number of notes of the length of the 
quant (60 ticks) has increased. The most frequent note stayed the 
same (120 ticks). Also, a tiny part of the very shortest notes was 
quantized to zero length, thus, eliminated. 

 

Fig. 5. Lengths of quantized notes whereas the quantization unit is 60 ticks. 

As a further step, these quantized music messages were 
turned into a state matrix of length that is equal to the division 
of the total length of the pieces by the quantization unit rounded 
to integer. Another dimension of the state matrix were the note 
pitches, that is 128 values in total. Then the value at each time 
step at a certain note represents its state (1 for pressed and 0 for 
not pressed). 80% of the data were sent to the echo state network 
whilst 20% were used for validation of the model, thus finding 
out the error. Error was calculated in the shape of root mean 
squared error (RMSE). 

An ESN was generated according to given parameters. This 
ESN was then trained on input and predicted music based on its 
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learned weights as a one time-step prediction. The training 
process was initialized by 300 time steps, that is by 300 quants 
(60 ticks). 

To find out the best parameters for our echo state network, 
we would repeat the procedure of generating the network 
according to different parameters and training the new network 
model on the very same data. Then we predicted next notes 
based on the newly gained weights and found out the error by 
comparing with the original Mozart data. Prediction of notes was 
a sequel of the training process. To be more precise, the model 
predicted notes as a one time-step prediction. Summarizing, a 
grid search analysis of 4 parameters of the echo state network 
has been performed. 

Parameters that have been investigated for tuning our 
network are the following. Leaking rate, input scaling, spectral 
radius and regularization which are the most important ESN 
parameters explained in Section IV. Since their ranges usually 
go from 0 to 1, 0 to 2, 0 to 2 and almost anything respectively, 
they have been tested for values in these ranges. An exhaustive 
grid search analysis had been performed looking for the best 
parameters. In addition to RMSE, mean and standard deviation 
were calculated. Original Mozart music had the mean of 0.04238 
and standard deviation of 0.0779. Mean represents the 
probability of a note to played at each time step in the note 
spectrum. In Mozart’s case note spectrum is from the 29th to the 
91st note. Standard deviation represents the mean of standard 
deviations of the notes in the note spectrum. 

Leaking rate has been tested from 0.0025 to 1, spectral radius 
varied from 0.0015 to 2 in this test, input scaling from 2*10-6 to 
2 and regularization from 10-6 to 105. 

 

Fig. 6. Scheme of research. Music is processed from the .mid format into .csv 

format. Then quantized and transformed into state matrix. 80% of the data are 

fed to the network while 20% are compared to the predicted data from the 

trained network model generated with given parameters. Lastly, the errors for 

given parameters are printed out. 

VI. RESULTS 

As we can see from the sorted by error (top 10) Table II, the 
lowest value of error (RMSE) is a tiny bit above 0.0307. It is 
clear that the best leaking rate for our model is about 0.025 while 
the combination of input scaling and spectral radius vary a little 
bit. Input scaling goes from 0.002 to 0.0002 and spectral radius 
from 0.01 to 0.1. We can notice that while RMSE is the lowest, 
the mean of the notes is about the same of the quantized original 
Mozart music data mean but standard deviation is quite 
different. 

reg stand for regularization, rmse stands for RMSE and std 
stands for standard deviation in the tables of error (Table II, 
Table III, Table IV). 

TABLE II.  SORTED ERROR DATA (TOP10) 

leaking 

rate 

input 

scaling 

spectral 

radius 

reg mean rmse std 

0.025 0.0002 0.1 0.0001 0.0410 0.030769 0.05696 

0.025 0.0005 0.01 0.001 0.0411 0.030771 0.05699 

0.025 0.0005 0.01 0.001 0.0411 0.030771 0.05698 
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0.025 0.0002 0.02 0.0001 0.041 0.030772 0.05697 

0.03 0.0005 0.1 0.001 0.0411 0.030772 0.05699 

0.025 0.0005 0.05 0.001 0.0411 0.030773 0.05699 

0.03 0.0005 0.06 0.001 0.0411 0.030774 0.05699 

0.02 0.0006 0.02 0.001 0.0411 0.030775 0.05697 

0.015 0.0006 0.02 0.001 0.0411 0.030776 0.05697 

0.02125 0.002 0.1 0.01 0.0410 0.030776 0.05697 

Having low leaking rate suggests us that the state has a lot of 
inertia and the change of the state is slow. Input scaling scales 
the Win matrix, thus, the input weights are very low and the 
model depends on its input just a tiny bit. Since it is lower than 
the spectral radius, it has a lot of memory, i.e. follows a long-
term dependency. Having low spectral radius as well tells us that 
the models are almost linear. To summarize, the prediction 
function is not very complex and the model has a lot of memory. 

From Table III we see that a high regularization value gives 
us huge errors. It has to be noted that for this particular grid 
search step, the maximum value of input scaling and spectral 
radius was 0.2. Thus, we can also deduce that high input scaling 
values lead to higher error. Though leaking rate is not as 
important, we can still see that some of its higher values lead to 
higher errors. 

High regularization significantly reduces the mean value and 
standard deviation of the notes. 

TABLE III.  SORTED ERROR DATA (WORST10) 

leaking 

rate 

input 

scaling 

spectral 

radius 

reg mean rmse std 

0.175 0.2 0.2 100000 0.0345 0.064397 0.00959 

0.175 0.2 0.14 100000 0.0357 0.064656 0.00952 

0.1 0.2 0.02 100000 0.035 0.064968 0.00801 

0.1 0.2 0.2 100000 0.0352 0.065097 0.00817 

0.1 0.2 0.14 100000 0.0353 0.065158 0.00806 

0.1 0.2 0.08 100000 0.0354 0.065258 0.00808 

0.025 0.2 0.02 100000 0.035 0.066049 0.00572 

0.025 0.2 0.14 100000 0.0352 0.0662 0.00584 

0.025 0.2 0.08 100000 0.0353 0.066243 0.00585 

0.025 0.2 0.2 100000 0.0354 0.066295 0.00582 

In order for us to see tendencies beyond regularization, we 
filtered the data for regularization below or equals 10. This 
brought us back to the maximum values of input scaling, spectral 
radius and leaking rate. 

In Table IV we see that high input scaling produces high 
error once again. Interestingly, leaking rate stays at 0.25 for the 
highest error. Although spectral radius stays quite high, it is not 
of the highest value for the highest error. Mean is almost as with 
the best results. Standard deviation is higher in this case than 
with the best results. It is even closer to quantized Mozart’s 
music standard deviation than the one provided with the best 
results. 

TABLE IV.  SORTED ERROR DATA (WORST10) WHILE REGULARIZATION IS 

SMALLER OR EQUAL TO 10 

leaking 

rate 

input 

scaling 

spectral 

radius 

reg mean rmse std 

0.25 2 0.8 1 0.0405 0.043065 0.06195 

0.25 2 0.8 0.1 0.0405 0.043094 0.06198 

0.25 2 1.4 0.01 0.0405 0.043098 0.06199 

0.25 2 1.4 1 0.0406 0.043128 0.06173 

0.25 2 1.4 0.1 0.0406 0.043139 0.06175 

0.25 2 1.4 0.01 0.0406 0.043142 0.06175 

0.25 2 1.4 10 0.0406 0.043169 0.06171 

0.25 0.8 1.4 1 0.0413 0.043178 0.06141 

0.25 0.8 1.4 0.1 0.0413 0.043234 0.06145 

0.25 0.8 1.4 0.01 0.0413 0.04324 0.0615 

Fig. 7 shows us the minimum error dependency on leaking 

rate. It is worth to note that although leaking rate 0.25 yields 

worst results when regularization is not high, it may also yield 

very good results with other values of ESN parameters as can 

be seen in Fig. 7. 

 

Fig. 7. Minimum RMSE dependency on leaking rate. 

The errors were grouped by leaking rate and the minimum 

value of the error was taken to plot the dependency graph. In 

Fig. 8 we can see the most promising region of leaking rate for 

our echo state network. 

 
Fig. 8. Zoomed minimum RMSE dependency on leaking rate. 

Fig. 9 shows us the minimum error dependency on input 

scaling whereas Fig. 10 zooms us to the most promising region 

of input scaling. The best values of input scaling are 0.0002 and 

0.0005. Going even lower, the values increase dramatically. 
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Fig. 9. Minimum RMSE dependency on input scaling. 

 
Fig. 10. Zoomed minimum RMSE dependency on input scaling. 

Fig. 11 shows us the minimum error dependency on spectral 

radius. From Fig. 12 and Fig. 13 we can see that the minimum 

RMSE stabilizes and reaches the minimum on spectral radius 

below 0.1. Then starts growing again above 0.01. 

 
Fig. 11. Minimum RMSE dependency on spectral radius. 

 
Fig. 12. Zoomed minimum RMSE dependency on spectral radius. 

 
Fig. 13. Zoomed minimum RMSE dependency on spectral radius to the most 

promising region. 

Fig. 14 and Fig. 15 implies us that the best regularization 

values are of the power 10-4 to 10-2. 

 
Fig. 14. Minimum RMSE dependency on regularization. 

 
Fig. 15. Zoomed minimum RMSE regularization on dependency. 
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Since it was a lot easier to find the optimal leaking rate than 

input scaling and spectral radius, we grouped the errors by input 

scaling and spectral radius taking the minimum RMSE value in 

Fig. 16. Regularization is an additional parameter that prevents 

overfitting and we have not grouped by it. It was quite easy to 

find as well. 

 
Fig. 16. Grid search minimum error (RMSE) grouped by input scaling and 

spectral radius. 

As it was found out that the most optimal leaking rate is 

0.025, the errors were grouped by input scaling and spectral 

radius once again by a set leaking rate. Now they we grouped 

having leaking rate set to 0.025. In Fig. 17 we can see pointy 

triangles in the lower region where the errors are the lowest. 

 
Fig. 17. Grid search minimum error (RMSE) grouped by input scaling and 

spectral radius while leaking rate equals 0.025. 

It has to be taken into account that producing an even finer 

grid might give us even better results but this takes time. Also, 

it seems from all this analysed data that the reduction in error 

would be quite low. 

VII. CONCLUSIONS 

We can affirm that the best value of leaking rate in our 
research proved to be 0.025. The best values of input scaling are 
0.0005 and 0.0002 whereas the most optimal values of spectral 
radius and regularization vary from 0.1 to 0.01 and from 10-4 to 
10-2 respectively. Having said that, the values will not produce 
the best results in separation, they will only produce the best 
results in a proper combination with other variables as it can be 
seen in the tables and figures. 

To summarize our research, we can state that to predict 
Mozart’s music, one has to memorize a lot of the notes in order 
to predict the next note. In the terms of our echo state network, 

it has to follow a long-term dependency because the input 
scaling is lower than the spectral radius. Having low spectral 
radius as well implies that the prediction function ought to be 
quite simple because the reservoir operates in an almost linear 
regime. 

VIII. FUTURE WORK 

Our main aim is to produce good music so that people would 

like to listen to it. To achieve this goal, we analysed the best 

models to replicate Mozart’s music. Lately, we have been 

planning to include information of piano hands into our 

composition model. In the future work we would like to expand 

the dimensions of this research since MIDI files have additional 

information such as the velocity of the pressed note as well as 

tempo changes and sound perturbations. We are also eager to 

expand this study for more great composers and then tune our 

models to not only imitate but also generate new music that 

people would value. If echo state networks do not prove to be 

deep enough, we are determined to broaden our research 

including deep learning models such as hierarchies of regular 

recurrent neural networks or long short-term memory networks 

and other recurrent types. We could then compare them and 

possibly combine the best parts of them. We are hoping that the 

artificial network is able to learn the rules or tendencies of 

music theory implicitly, at least partially. If this is not the case, 

we could augment it with heuristics. 
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