
84

Predicting Mozart’s Next Note via Echo State

Networks

Ąžuolas Krušna, Mantas Lukoševičius

Faculty of Informatics

Kaunas University of Technology

Kaunas, Lithuania

azukru@ktu.edu, mantas.lukosevicius@ktu.lt

Abstract—Even though algorithmic music has been around the

world since the old days, it has never attracted as many

researchers as in the recent years. To our knowledge it existed in

Iran back in the Middle Ages and in Europe during the Age of

Enlightenment. Though the form has changed and it has grown

layers of complexity, the very foundations of the algorithm that

generates musical compositions have not changed, i.e. most of

them are based on structures of fortuity. Additionally, models that

are able to learn have been discovered allowing us to imitate the

music of the incredible artists throughout history. The thought

alone is crazy to think of and seems to be from the sci-fi. In this

paper, a research trying to find the best model of an echo state

network in order to mimic the music of the legendary Wolfgang

Amadeus Mozart has been carried out. As it turns out, the best

models are the ones that rely on long-term dependencies.

Keywords—algorithtmic composition, echo state network, MIDI,

recurrent neural network

I. INTRODUCTION

Algorithmic music is by no means a new trend in our techy
world. In fact, three Iranian brothers collectively known as Banu
Musa were successfully devising automatic and even
programmable musical instruments back in 850 AD [1]. They
were most likely invited to the best parties in the city back then.
Moreover, an algorithmic game circulated around Europe since
the Enlightenment Age, i.e. the 18th century in a form of
Musikalishes Würfelspiel. It has been attributed to Mozart in a
form of myth, yet never proven to be true. This game took small
fragments of music and combined them in a random order by
chance, often tossing a dice [2]. Since then, the scope of the
algorithmic music has augmented layers of complexity, but the
foundations have not changed. The main difference is that now
we do not toss a dice, but run a random number generation
function in our favourite programming language.

In this article we are trying to imitate classical piano music.
For a quantitative rather than qualitative analysis only one
composer was chosen. Mozart has been opted for his
indisputable genius and some haphazardness.

Rather than working with sound signals, we chose to work
with notes for several reasons. Firstly, it is a lot less intricate.
Therefore, it is a lot easier for us to understand and analyse it as
well as it is for the algorithm in the means of computational
resources and dependency on previous notes. In the note level
we are also able to compare it with the musical theory. And it
helps us stay in the realm of classical music as well.

Furthermore, we are lucky enough to have the MIDI
(musical instrument digital interface) protocol for a .mid is a
musical file format that captures the notes, the times piano keys
were pressed and released, how strong they were pressed etc.
MIDI supports 128 notes whereas general pianos usually
provide 88 keys.

Musical composition has been one of the long term goals of
artificial intelligence (AI) [3]. Broadly speaking, music
generation by AI is based on the principle that musical styles are
in effect complex systems of probabilistic relationships, as
defined by the musicologist Leonard B. Meyer. In the early days,
symbolic AI methods and specific grammars describing a set of
rules had driven the composition [4], [5]. Then these methods
were significantly improved by evolutionary algorithms in a
variety of ways [6] as represented by the famous EMI project
[7]. More recently, statistics in the form of Markov chains and
hidden Markov models (HMM) played a major part in
algorithmic composition [8]. Next to this development was the
rapid rise of neural networks (NN) due to the growing capacity
of computational powers. It has made a remarkable process not
only in the AI world but also in music composition [9].

As music is a sequence of notes, a sequential model was
chosen to train on Mozart’s music. Markov models are not very
suitable for this task due to their monophony (although it is
possible to design a system for polyphonic music as well).
Currently, the cutting-edge approach to generative music
modelling is based on recurrent networks [4], [10], [11] like the
long short-term memory (LSTM) network. Traditional recurrent
neural networks (RNN) lack long-term dependency, thus are
able to generate melody yet no harmony, i.e. the music gets stuck
at some point or turns out to be repetitive. LSTMs are better in
this case since they have a stronger long-term dependency.
Though fine-tuned LSTM algorithms are able to overcome the
obstacles that traditional RNN algorithms confront, they still
face the same problems in a way that the music lacks the theme,

Copyright held by the author(s).

85

i.e. the big picture. Long short-term memory algorithms have
been extensively studied in the recent years. Besides, LSTM
algorithms are also heavy and require a lot of resources. We have
been looking for a light-weight solution.

For these reasons, we chose to work with a type of recurrent
neural networks – echo state network (ESN) – that have barely
been researched for musical composition.

II. DATA & TOOLS

Musical data were downloaded in the format of .mid from

the website http://www.piano-midi.de/. From now on MIDI and

.mid will be used interchangeably meaning the same, i.e. the file

format unless stated otherwise, e.g. MIDI protocol. In total, 21

pieces by Mozart were gathered (all that are found on the

website).

MIDI format is a sequence of notes (and commands such as

tempo change and sound perturbations) whereas the time

difference is represented in ticks. A quarter note is usually 480

or 960 ticks but that depends on the resolution. Thus, a full note

or, in other words, a tact is 1920 or 3840 ticks respectively.

Later on, the data had to be transformed in a format that is

easier to read, maintain and process. Hence, it was read and

transformed into notes as messages into a .csv (comma

separated values) format.

Every message consists of information of this type:

 note pitch

 on tick

 off tick

 length

The length parameter is not in the MIDI file and had been

artificially generated for the purpose of data analysis.

Table I shows the types of information as well as their

ranges in a message. Note pitch ranges from 0 to 127, thus a

byte is more than enough to store it. The beginning and the end

of a note tick is undetermined and can grow to infinity when the

data grows. Length parameter is purely the difference between

on and off ticks. It may grow to a large number due to software

bugs or a divergence of the algorithm, but usually it shall stay

in the realm of classical music and get a value up to a full note.

TABLE I. INFORMATION INSIDE A MESSAGE

Info Note pitch On tick Off tick Length

Type byte long long integer
Range 0-127 0-infinity 1-infinity 1-full note

A message in MIDI that signifies the event of pressing a note

is the note_on message. It represents an event when a note is

released as well, only the velocity then is equal to zero. The

algorithm (Fig. 1) that was applied for treatment of raw MIDI

files looks as following:
Fig. 1. Algorithm of raw MIDI file treatment into a CSV file

The programming language of choice was Python due to its

recognition in data science and machine learning among

scientists and developers. Also, due to the many data processing

as well as machine learning libraries although none of the

machine learning libraries were used for this work. For the

purpose of .mid processing, Mido library was chosen [12].

Machine learning algorithms perform better under more

data. We could have just taken in all of the composers from the

website full of classical MIDI files, but we chose only one for

the purpose of thorough analysis. Despite the fact that our

choice was only Mozart’s music and that had given us only 21

pieces of scores, this resulted in around 68 thousand notes.

III. INITIAL DATA ANALYSIS

Prior to the research, an analysis of the data was performed
based on the distribution of note pitches as well as their lengths.
As we can clearly see in Fig. 2, there are 2 maximums. One is of
a higher pitch while the other is of a quite lower pitch. This is
most probably due to the fact that piano is played by 2 hands and
that the left hand usually wanders in the region of lower pitch
notes whilst the right hand sits in the region of higher pitch notes.

Fig. 2. Distribution of Mozart notes. One can obviously spot 2 maximums of a

higher and a lower pitch. This is most likely due to the fact that piano is played

by 2 hands and that the left hand usually wanders in the region of lower pitch

notes whilst the right hand sits in the region of higher pitches.

These data are not so much relevant for our research, but
provide us with insights such as it would make perfect sense to
study the hands in more detail. We ought to bolster our research
either by adding an additional dimension of the hand or by
having 2 different outputs for each hand by the network. This
analysis is also useful for future comparison and judgment of
generated music.

Analysis of lengths (Fig. 3) provide us only one maximum,
meaning both hands share the same maximum or that the note
lengths of one hand are very dispersed. iterate through the messages:

--check if it is a ‘note_on’ type of message:

----if velocity > 0:

------take the time of the note that was pressed

----else if velocity equals 0:

------check if the actual note was pressed:

--------release the note

--------measure the length of the note

----------append the note as a message to the CSV

http://www.piano-midi.de/

86

Fig. 3. Distribution of Mozart note lengths.

IV. NETWORK

Echo state networks supply an architecture and principles of
supervised learning for recurrent neural networks. The idea
behind an ESN is to drive a large, random and fixed reservoir of
neurons with the input signal (Fig. 4). Thence, inducing each
neuron within it with a nonlinear response signal. After,
combine the desirable output data by a trainable linear
combination of all of these response signals [13]. In practice, it
is important to keep in mind that the reservoir acts not only as a
nonlinear expansion, but also as a memory input at the same time
[14].

Echo state network may be tuned by altering the following
parameters:

 leaking rate

 input scaling

 spectral radius

Leaking rate of the network can be regarded as the speed of
the reservoir update dynamics in discrete time.

Another key parameter to optimize an ESN is the input
scaling. It multiplies the input weight matrix Win by its value
either strengthening the input weights or diminishing them.

Fig. 4. Design of an echo state network [14]. Here u is the input data, Win is the

input weights matrix, x is the reservoir nodes and their outputs, W is their

weights, Wout is the output weights and y is the output data.

Spectral radius is one of the most global parameters of an
ESN, i.e. the maximum absolute eigenvalue of the reservoir
weights matrix W. It scales the matrix W, or in alternate words,
scales the width of the distribution of its nonzero elements [14].

In order to avoid overfitting, regularization is used.

The number of neurons inside the reservoir has been opted
be equal to 1000.

Programming code for ESN has been adapted from [15] and
expanded for multidimensional input data as well as output.

V. EXPERIMENTAL SETUP

Research has been accomplished in a manner that can be
seen in Fig. 6. First of all, music was accumulated in .mid format
(hex code). As stated before, it was processed by Mido library
and stored in a .csv format in a form of messages that carry the
information of notes as the pitch number, on and off ticks and
length.

Then the messages were read from the .csv file and
quantized. Quantization was performed for the beginning and
the end of the notes in the following way. A quantization unit of
60 ticks (represents a 32nd of a note) was chosen. Next, if the
residual value of the tick was less than half the quantization unit,
it was reduced by the residual. If the residual value was equal or
higher than half of the quantization unit, i.e. 30 ticks, it was
increased by the difference between the quantization unit and the
residual. The lengths of notes were recalculated afterwards.

In Fig. 5 we can see the distribution of the notes after
quantization. Hereby, the number of notes of the length of the
quant (60 ticks) has increased. The most frequent note stayed the
same (120 ticks). Also, a tiny part of the very shortest notes was
quantized to zero length, thus, eliminated.

Fig. 5. Lengths of quantized notes whereas the quantization unit is 60 ticks.

As a further step, these quantized music messages were
turned into a state matrix of length that is equal to the division
of the total length of the pieces by the quantization unit rounded
to integer. Another dimension of the state matrix were the note
pitches, that is 128 values in total. Then the value at each time
step at a certain note represents its state (1 for pressed and 0 for
not pressed). 80% of the data were sent to the echo state network
whilst 20% were used for validation of the model, thus finding
out the error. Error was calculated in the shape of root mean
squared error (RMSE).

An ESN was generated according to given parameters. This
ESN was then trained on input and predicted music based on its

87

learned weights as a one time-step prediction. The training
process was initialized by 300 time steps, that is by 300 quants
(60 ticks).

To find out the best parameters for our echo state network,
we would repeat the procedure of generating the network
according to different parameters and training the new network
model on the very same data. Then we predicted next notes
based on the newly gained weights and found out the error by
comparing with the original Mozart data. Prediction of notes was
a sequel of the training process. To be more precise, the model
predicted notes as a one time-step prediction. Summarizing, a
grid search analysis of 4 parameters of the echo state network
has been performed.

Parameters that have been investigated for tuning our
network are the following. Leaking rate, input scaling, spectral
radius and regularization which are the most important ESN
parameters explained in Section IV. Since their ranges usually
go from 0 to 1, 0 to 2, 0 to 2 and almost anything respectively,
they have been tested for values in these ranges. An exhaustive
grid search analysis had been performed looking for the best
parameters. In addition to RMSE, mean and standard deviation
were calculated. Original Mozart music had the mean of 0.04238
and standard deviation of 0.0779. Mean represents the
probability of a note to played at each time step in the note
spectrum. In Mozart’s case note spectrum is from the 29th to the
91st note. Standard deviation represents the mean of standard
deviations of the notes in the note spectrum.

Leaking rate has been tested from 0.0025 to 1, spectral radius
varied from 0.0015 to 2 in this test, input scaling from 2*10-6 to
2 and regularization from 10-6 to 105.

Fig. 6. Scheme of research. Music is processed from the .mid format into .csv

format. Then quantized and transformed into state matrix. 80% of the data are

fed to the network while 20% are compared to the predicted data from the

trained network model generated with given parameters. Lastly, the errors for

given parameters are printed out.

VI. RESULTS

As we can see from the sorted by error (top 10) Table II, the
lowest value of error (RMSE) is a tiny bit above 0.0307. It is
clear that the best leaking rate for our model is about 0.025 while
the combination of input scaling and spectral radius vary a little
bit. Input scaling goes from 0.002 to 0.0002 and spectral radius
from 0.01 to 0.1. We can notice that while RMSE is the lowest,
the mean of the notes is about the same of the quantized original
Mozart music data mean but standard deviation is quite
different.

reg stand for regularization, rmse stands for RMSE and std
stands for standard deviation in the tables of error (Table II,
Table III, Table IV).

TABLE II. SORTED ERROR DATA (TOP10)

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.025 0.0002 0.1 0.0001 0.0410 0.030769 0.05696

0.025 0.0005 0.01 0.001 0.0411 0.030771 0.05699

0.025 0.0005 0.01 0.001 0.0411 0.030771 0.05698

88

0.025 0.0002 0.02 0.0001 0.041 0.030772 0.05697

0.03 0.0005 0.1 0.001 0.0411 0.030772 0.05699

0.025 0.0005 0.05 0.001 0.0411 0.030773 0.05699

0.03 0.0005 0.06 0.001 0.0411 0.030774 0.05699

0.02 0.0006 0.02 0.001 0.0411 0.030775 0.05697

0.015 0.0006 0.02 0.001 0.0411 0.030776 0.05697

0.02125 0.002 0.1 0.01 0.0410 0.030776 0.05697

Having low leaking rate suggests us that the state has a lot of
inertia and the change of the state is slow. Input scaling scales
the Win matrix, thus, the input weights are very low and the
model depends on its input just a tiny bit. Since it is lower than
the spectral radius, it has a lot of memory, i.e. follows a long-
term dependency. Having low spectral radius as well tells us that
the models are almost linear. To summarize, the prediction
function is not very complex and the model has a lot of memory.

From Table III we see that a high regularization value gives
us huge errors. It has to be noted that for this particular grid
search step, the maximum value of input scaling and spectral
radius was 0.2. Thus, we can also deduce that high input scaling
values lead to higher error. Though leaking rate is not as
important, we can still see that some of its higher values lead to
higher errors.

High regularization significantly reduces the mean value and
standard deviation of the notes.

TABLE III. SORTED ERROR DATA (WORST10)

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.175 0.2 0.2 100000 0.0345 0.064397 0.00959

0.175 0.2 0.14 100000 0.0357 0.064656 0.00952

0.1 0.2 0.02 100000 0.035 0.064968 0.00801

0.1 0.2 0.2 100000 0.0352 0.065097 0.00817

0.1 0.2 0.14 100000 0.0353 0.065158 0.00806

0.1 0.2 0.08 100000 0.0354 0.065258 0.00808

0.025 0.2 0.02 100000 0.035 0.066049 0.00572

0.025 0.2 0.14 100000 0.0352 0.0662 0.00584

0.025 0.2 0.08 100000 0.0353 0.066243 0.00585

0.025 0.2 0.2 100000 0.0354 0.066295 0.00582

In order for us to see tendencies beyond regularization, we
filtered the data for regularization below or equals 10. This
brought us back to the maximum values of input scaling, spectral
radius and leaking rate.

In Table IV we see that high input scaling produces high
error once again. Interestingly, leaking rate stays at 0.25 for the
highest error. Although spectral radius stays quite high, it is not
of the highest value for the highest error. Mean is almost as with
the best results. Standard deviation is higher in this case than
with the best results. It is even closer to quantized Mozart’s
music standard deviation than the one provided with the best
results.

TABLE IV. SORTED ERROR DATA (WORST10) WHILE REGULARIZATION IS

SMALLER OR EQUAL TO 10

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.25 2 0.8 1 0.0405 0.043065 0.06195

0.25 2 0.8 0.1 0.0405 0.043094 0.06198

0.25 2 1.4 0.01 0.0405 0.043098 0.06199

0.25 2 1.4 1 0.0406 0.043128 0.06173

0.25 2 1.4 0.1 0.0406 0.043139 0.06175

0.25 2 1.4 0.01 0.0406 0.043142 0.06175

0.25 2 1.4 10 0.0406 0.043169 0.06171

0.25 0.8 1.4 1 0.0413 0.043178 0.06141

0.25 0.8 1.4 0.1 0.0413 0.043234 0.06145

0.25 0.8 1.4 0.01 0.0413 0.04324 0.0615

Fig. 7 shows us the minimum error dependency on leaking

rate. It is worth to note that although leaking rate 0.25 yields

worst results when regularization is not high, it may also yield

very good results with other values of ESN parameters as can

be seen in Fig. 7.

Fig. 7. Minimum RMSE dependency on leaking rate.

The errors were grouped by leaking rate and the minimum

value of the error was taken to plot the dependency graph. In

Fig. 8 we can see the most promising region of leaking rate for

our echo state network.

Fig. 8. Zoomed minimum RMSE dependency on leaking rate.

Fig. 9 shows us the minimum error dependency on input

scaling whereas Fig. 10 zooms us to the most promising region

of input scaling. The best values of input scaling are 0.0002 and

0.0005. Going even lower, the values increase dramatically.

89

Fig. 9. Minimum RMSE dependency on input scaling.

Fig. 10. Zoomed minimum RMSE dependency on input scaling.

Fig. 11 shows us the minimum error dependency on spectral

radius. From Fig. 12 and Fig. 13 we can see that the minimum

RMSE stabilizes and reaches the minimum on spectral radius

below 0.1. Then starts growing again above 0.01.

Fig. 11. Minimum RMSE dependency on spectral radius.

Fig. 12. Zoomed minimum RMSE dependency on spectral radius.

Fig. 13. Zoomed minimum RMSE dependency on spectral radius to the most

promising region.

Fig. 14 and Fig. 15 implies us that the best regularization

values are of the power 10-4 to 10-2.

Fig. 14. Minimum RMSE dependency on regularization.

Fig. 15. Zoomed minimum RMSE regularization on dependency.

90

Since it was a lot easier to find the optimal leaking rate than

input scaling and spectral radius, we grouped the errors by input

scaling and spectral radius taking the minimum RMSE value in

Fig. 16. Regularization is an additional parameter that prevents

overfitting and we have not grouped by it. It was quite easy to

find as well.

Fig. 16. Grid search minimum error (RMSE) grouped by input scaling and

spectral radius.

As it was found out that the most optimal leaking rate is

0.025, the errors were grouped by input scaling and spectral

radius once again by a set leaking rate. Now they we grouped

having leaking rate set to 0.025. In Fig. 17 we can see pointy

triangles in the lower region where the errors are the lowest.

Fig. 17. Grid search minimum error (RMSE) grouped by input scaling and

spectral radius while leaking rate equals 0.025.

It has to be taken into account that producing an even finer

grid might give us even better results but this takes time. Also,

it seems from all this analysed data that the reduction in error

would be quite low.

VII. CONCLUSIONS

We can affirm that the best value of leaking rate in our
research proved to be 0.025. The best values of input scaling are
0.0005 and 0.0002 whereas the most optimal values of spectral
radius and regularization vary from 0.1 to 0.01 and from 10-4 to
10-2 respectively. Having said that, the values will not produce
the best results in separation, they will only produce the best
results in a proper combination with other variables as it can be
seen in the tables and figures.

To summarize our research, we can state that to predict
Mozart’s music, one has to memorize a lot of the notes in order
to predict the next note. In the terms of our echo state network,

it has to follow a long-term dependency because the input
scaling is lower than the spectral radius. Having low spectral
radius as well implies that the prediction function ought to be
quite simple because the reservoir operates in an almost linear
regime.

VIII. FUTURE WORK

Our main aim is to produce good music so that people would

like to listen to it. To achieve this goal, we analysed the best

models to replicate Mozart’s music. Lately, we have been

planning to include information of piano hands into our

composition model. In the future work we would like to expand

the dimensions of this research since MIDI files have additional

information such as the velocity of the pressed note as well as

tempo changes and sound perturbations. We are also eager to

expand this study for more great composers and then tune our

models to not only imitate but also generate new music that

people would value. If echo state networks do not prove to be

deep enough, we are determined to broaden our research

including deep learning models such as hierarchies of regular

recurrent neural networks or long short-term memory networks

and other recurrent types. We could then compare them and

possibly combine the best parts of them. We are hoping that the

artificial network is able to learn the rules or tendencies of

music theory implicitly, at least partially. If this is not the case,

we could augment it with heuristics.

REFERENCES

[1] MIDI history: chapter 1 – 850 AD TO 1850 AD,

https://www.midi.org/articles/midi-history-chapter-1, accessed on March
2018.

[2] Cope, D. (1996). Experiments in musical intelligence. A-R Editions, Inc.

[3] Z., Sun, et al., “Composing music with grammar argumented neural
networks and note-level encoding,” arXiv preprint arXiv:1611.05416v2,
2016.

[4] G. M. Rader, “A method for composing simple traditional music by
computer,” Communications of the ACM, vol. 17, no. 11, pp. 631–638,
1974.

[5] J. D. Fernandez and F. Vico, “AI methods in algorithmic composition: a
comprehensive survey,” Journal of Artificial Intelligence Research, vol.
48, no. 48, pp. 513–582, 2013.

[6] K. Thywissen, “Genotator: an environment for exploring the application
of evolutionary techniques in computer-assisted composition,” Organised
Sound, vol. 4, no. 2, pp. 127–133, 1999.

[7] D. Cope, “Computer modeling of musical intelligence in EMI,” Computer
Music Journal, vol. 16, no. 16, pp. 69–87, 1992.

[8] M. Allan, “Harmonising chorales in the style of Johann Sebastian Bach,”
Master’s Thesis, School of Informatics, University of Edinburgh, 2002.

[9] D. Silver, et al., “Mastering the game of Go with deep neural networks
and tree search.” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[10] H. Chu, R. Urtasun, S. Fidler, “Song from PI: A Musically Plausible
Network for Pop Music Generation”, 2016,
https://arxiv.org/abs/1611.03477H, accessed on March 2018.

[11] A. Huang, R. Wu, “Deep learning for music,” 2016,
https://arxiv.org/abs/1606.04930, accessed on March 2018.

[12] Mido – MIDI objects for Python, https://mido.readthedocs.io, accessed on
March 2018.

[13] H., Jaeger “Echo state network,” Scholarpedia,
http://www.scholarpedia.org/article/Echo_state_network, accessed on
March 2018.

91

[14] M., Lukoševičius, “A Practical Guide to Applying Echo State Networks,”
Neural Networks Tricks of the Trade, 2nd e., Springer, 2012

[15] Sample echo state network souce codes, http://minds.jacobs-
university.de/mantas/code, accessed on March 2018.

