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Abstract—Our project was to create a demo system where a small 

humanoid robot accepts an offered handshake when it sees it. 

The visual handshake recognition, which is the main part of the 

system proved to be not an easy task. Here we describe how and 

how well we solved it using deep learning. In contrast to most 

gesture recognition research we did not use depth information or 

videos, but did this on static images. We wanted to use a simple 

camera and our gesture is rather static.  We have collected a 

special dataset for this task. Different configurations and learning 

algorithms of convolutional neural networks were tried. 

However, the biggest breakthrough came when we could 

eliminate the background and make the model concentrate on the 

person in front. In addition to our experiment results we can also 

share our dataset. 
Keywords—image recognition, computer vision, deep learning, 

convolutional neural networks, robotics 

I. INTRODUCTION 

The goal of this project is to create a robot that can visually 

recognize an offered handshake and accept it. When the robot 

sees a man offering a handshake, it responds by stretching its 

arm too.  This serves as a visual and interactive demonstration, 

which would get students more interested in machine learning 

and robotics. 

For this purpose we used a small humanoid robot, a simple 

camera mounted on it, and deep convolutional neural networks 

for image recognition.  The recognition, as well as training of 

it, were done on a PC and the command to raise the arm was 

sent back to the robot.  

This article mainly shares our experience in developing 

and training the visual handshake recognition system, which 

proved to not be trivial. In particular, we will discuss how 

images were collected, preprocessed, what architecture of 

convolutional neural networks was used, how it was trained 

and tested; what gave good and what not so good results.  

This document is divided into several sections. Section II 

reviews existing solution to similar problem. Section III 

introduces our method for this project. Section IV describes 

the data set used in this study. Section V emphasizes 

importance of data preprocessing before training. Section VI 

describes robot interface. Sections VII and VIII provide 

analysis of results and conclusions. 

II. 

RELATED WORK 

Virtually all vision-based hand gesture recognition systems 

described in literature use (a) image sequences (videos) with 

(b) depth information in them, see [1] for a good recent 

survey. Microsoft Kinect [2] and Leap Motion [3] are two 

examples of popular sensors specifically designed for gesture 

and posture 3D tracking. While clearly both temporal (a) and 

depth (b) aspects are helpful in recognizing hand gestures, our 

system uses neither of the two. We (b) used an inexpensive 

camera for simple RGB image acquisition to make the system 

more accessible and the algorithms more widely applicable, 

e.g., in smartphones, natural lighting. We also (a) used single 

frames to recognize the extended hand for the handshake, 

since the gesture is rather static – just holding the extended 

hand still – and could perhaps be called “posture”. This makes 

the recognition problem considerably harder.  

A bit similar project to ours called “Gesture Recognition 

System using Deep Learning” was presented in PyData 

Warsaw 2017 conference [4]. The author introduced a Python-

based, deep learning gesture recognition model that is 

deployed on an embedded system, works in real-time and can 

recognize 25 different hand gestures from a simple webcam 

stream. The development of the system included: a large-scale 

crowd-sourcing operation to collect over 150,000 short video 

clips, a process to decide which deep learning framework to 

use, the development of a network architecture that allows for 

classifications of video clips solely with RGB input frames, 

the iterations necessary to make the neural network run in real-

time on embedding devices, and lastly, the discovery and 

development of playful gesture-based applications. Their 

approach is still different from our approach in that they used 

video samples as their input (several frames at a time) and 

tried to recognize moving gestures.  

There is considerable literature similar to our approach in 

both (a) and (b) for recognizing sign language hand gestures 

(or rather postures) from RGB images, including using deep 

learning [5]. These approaches, however, usually work with 

images of a single hand on a uniform background where the 

hand can be cropped from the image using thresholding [5], 

skin color [6],  or relying on the subject wearing a brightly-

colored glove [7]. 

Copyright held by the author(s).   
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III. OUR METHOD 

 
Fig. 1. System training model. 

 

Fig. 2. System running model. 

The system model consists of several parts showed in 

Figure 1 and 2, including camera, camera images pre-

processing, convolutional neural network’s training using deep 

learning, graphical user interface, robot interface and robot 

itself. 

At first camera was used to collect the image dataset. This 

is described in section IV. After later research, which is 

described in section VI, the images in the dataset had to be 

pre-processed to be able to train the model, which is the next 

part of our system. Using Keras library the model was created, 

compiled and finally trained with the images (this process 

explained in section VI). The final part is to run the model to 

recognize new live images. For this reason camera’s interface 

was programmed to take photos at every 0.5 second, the model 

gets those images as an input and returns probability of seeing 

an offered handshake as an output result. If this result is above 

a certain threshold, a robot interface sends a command to robot 

to perform a corresponding task. This part more deeply 

described in section VI. 

A. Choice of using deep learning libraries 

Deep learning [8] (also known as deep structured learning 

or hierarchical learning) is part of a broader family of machine 

learning methods based on learning data representations, as 

opposed to task-specific algorithms. Learning can be 

supervised, semi-supervised or unsupervised. 

Deep learning models are loosely related to information 

processing and communication patterns in a biological nervous 

system, such as neural coding that attempts to define a 

relationship between various stimuli and associated neuronal 

responses in the brain. 

Deep learning architectures such as deep neural networks, 

deep belief networks and recurrent neural networks [9] have 

been applied to fields including computer vision, speech 

recognition, natural language processing, audio recognition, 

social network filtering, machine translation, bioinformatics 

and drug design, where they have produced results comparable 

to and in some cases superior to human experts. 

Convolutional networks [8], also known as convolutional 

neural networks, or CNNs, are a specialized kind of neural 

network for processing data that has a known grid-like 

topology. Examples include time-series data, which can be 

thought of as 1-D grid taking samples at regular time intervals, 

and image data, which can be thought of as a 2-D grid of 

pixels. Convolutional networks have been tremendously 

successful in practical applications. The name “convolutional 

neural network” indicates that the network employs a 

mathematical operation called convolution. Convolution is a 

specialized kind of linear operation. Convolutional networks 

are simply neural networks that use convolution in place of 

general matrix multiplication in at least one of their layers. 

Keras [10] is a high-level deep learning library written in 

Python and capable of running on top of either TensorFlow or 

Theano deep learning libraries. It was developed with a focus 

on enabling fast experimentation. Being able to go from idea 

to result with the least possible delay is key to doing good 

research. Keras deep learning library allows for easy and fast 

prototyping (through total modularity, minimalism, and 

extensibility). It supports both convolutional networks (we 

used in our solution) and recurrent networks, as well as 

combinations of the two. Keras also supports arbitrary 

connectivity schemes (including multi-input and multi-output 

training) and runs seamlessly on CPU and GPU. The core data 

structure of Keras is a model, a way to organize layers. The 

main type of model is the Sequential model, a linear stack of 

layers. Keras’ Guiding principles include Modularity. A model 

is understood as a sequence or a graph of standalone, fully-

configurable modules that can be plugged together with as 

little restrictions as possible. In particular, neural layers, cost 

functions, optimizers, initialization schemes, activation 

functions, regularization schemes are all standalone modules 

that users can combine to create new models. Each module 

should be kept short and simple. To be able to easily create 

new modules allows for total expressiveness, making Keras 

suitable for advanced research. 

B. Our convolutional neural network model 

The convolutional neural network model that we used is 

specified in Figure 3.  

 

Fig. 3. Our convolutional neural network model. 

It takes 64x40 resolution images as inputs, consists of 

three convolutional layers, each followed by pooling, and has 

a single node output. We use rectified linear units in all layers 

except for the output node where it is sigmoid.   
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C. Training process 

Before starting to train the model there are several 

parameters which describe training details. The first parameter 

is epochs count. Epoch itself is an arbitrary milestone, 

generally defined as “one pass over the entire dataset”, used to 

separate training into distinct phases, which is useful for 

logging and periodic evaluation. In general it means how 

many times the process will go through the training set.  

Second parameter is batch size. Batch size defines number 

of samples that going to be propagated through the network. 

For instance, there are 200 training samples and we want to set 

up batch size equal to 30. Algorithm takes first 30 samples 

from the training dataset and trains network. Next it takes 

second 30 samples and trains network again. The procedure 

can be done until we propagate through the networks all 

samples. However, the problem usually happens with the last 

set of samples. In this example the last 20 samples which is 

not divisible by 30 without remainder. The simplest solution is 

just to get final 20 samples and train the network.  

We have tried different loss functions and training 

optimization methods. The ones that worked reasonably well 

in the end are reported in Section VII. 

Train accuracy and train loss are calculated on the go, 

during training. Figures in Section VII show how well our 

network is doing on the data it is being trained. Training 

accuracy usually keeps increasing throughout training. 

D. Validation process 

To validate the model we need to have new dataset this 

new images, which has not been used in training process. 

Validation is usually carried out together with training. After 

every epoch, the model is tested against a validation set, and 

validation loss and accuracy are calculated. These numbers tell 

you how good your model is at predicting outputs for inputs it 

has never seen before. Validation accuracy increases initially 

and drops as you over fit. Overfitting happens when our model 

fits too well to the training set. It then becomes difficult for the 

model to generalize to new examples that were not in the 

training set. For example, our model recognizes specific 

images in your training set instead of general patterns. Our 

training accuracy will be higher than the accuracy on the 

validation/test set. 

E. Testing process 

To test the model we need another new dataset. Testing 

usually is run manually by giving an image from dataset for 

trained model to get a result. And the result is a percent value 

that shows probability on each output option 

IV. DATA COLLECTION PREPARATION 

As we mentioned in the previous section a collection of 

image data was needed to implement this project. As the 

system only recognizes greetings, only two results are 

possible: greetings are recognized or not. During the 

development of the whole project, more than 4,000 different 

images were collected for the training of the neural network. 

Approximately 2000 for each category. Single-image 

resolution is 318x198.  

We can see in Figure 4, that in the image, one person was 

usually with his hand stuck or not. It was also tried to capture 

images in as many different environments as possible. Human 

clothing was also varied trying to capture as diverse as 

possible colors. This is important in order to ensure that 

recognition is not restricted to a particular specific situation. 

 
Fig. 4. Image samples: top positive, bottom negative. 

The pictures were divided into three sets: training, 

validation and testing. The neural network is taught with 

training data. It is then validated with validation data to verify 

that a well-trained neural network performs recognition with 

new examples. The test data is intended to validate the final 

neural network's capability to obtain the final true recognition. 

In addition, data augmentation [11] was used during training, 

in which various small transformations were made to the 

images before training on them (rotation, translation, color-

shift, up- /down-scaling). 

If there are people who are interested in this task, we could 

share the data with everyone who wants it. 

V. BACKGROUND REMOVAL 

Initially, we tried to train the neural network with the data 

obtained directly from the camera without preprocessing them. 

However, it has been noticed that the model with the best 

attempt reached 78 percent training accuracy and about 64 

percent validation accuracy followed by overfitting, during 

which the error rate increased significantly. For this reason, it 

was necessary to look for solutions on how to avoid overfitting 

and how to increase the validation accuracy of the model. To 

achieve this, attempts were made to change the model's 

parameters, but this did not improve result as much as it was 

expected. Then it was decided to process the data itself. From 

previous experiments, we were able to get the impression that 

overfitting appears due to the excessive color gamut and color 

of the images. For this reason, we have decided to try 

removing background images and training a neural network 

with pictures without background. However, that causes a new 

problem. How to detect where the background is and where is 

an object (in this case a human)? For this problem, we decided 

to take the first image without a human and claim that it is a 

background and all other images are objects with backgrounds. 

Though, in this case camera had to be in fixed position. Then 

we were able to subtract two images and get image without a 

background. Usually, after subtraction some noise always had 
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left in images. To reduce it, we set a permissible error for pixel 

RGB values. You can see those images in Figure 5. 

 
Fig. 5. Same images with (left) and without (right) background. 

The result was obvious. It's possible to achieve 91 percent 

accuracy with a smooth natural background. This means that 

the model is quite precise enough to recognize the extended 

hand when the background behind the human is equal and 

does not need to be removed. 

In order to obtain this result, first we needed to draw up a 

test plan, which would make it clear how the training is most 

appropriate. We've identified three methods (regular training, 

training with removed background, training with attached 

backgrounds), and five types of data (when the background is 

a specific color, when the background is smooth and natural, 

when the background is static color, when the background is 

changing and when the background is with a few outsiders). 

All test results are presented in the results Section VII. 

VI.INTERFACING ROBOT 

 
Fig. 6. Photo of our robot and use case.  

For this project HR-OS1 Humanoid Endoskeleton robot 

[12] was used. It is showed in Figure 6. It has integrated 

onboard Linux computer with Intel Atom processor, which 

gives all the processing power to run robot. The HR-OS1 is a 

hackable, modular, humanoid robot development platform 

designed from the ground up with customization and 

modification in mind. It has built in software which invokes 

robot actions. You can see robot’s software interface in Figure 

7. 

 
Fig. 7. Robot joints management interface. 

Robot interface is used when the model is started to predict 

new images. After CNN return probability of the image it is 

sent to robot interface. Then robot interface reads the input 

value and if it is true interface runs command for a robot to 

raise its hand. 

VII. EXPERIMENT RESULTS AND ANALYSIS 

In this section we will explain in detail what experiments 

were done and what results were achieved. 

As we mentioned in the previous section the first 

experiments were carried out using dataset with non-removed 

background images for training and validation. The other 

parameters were: 

 Image width: 64 

 Image height: 40 

 Training dataset samples: 421 

 Validation dataset samples: 122 

 Epochs: 30 

 Batch size: 32 

 Model loss function: mean squared error 

 Model optimizer: stochastic gradient descent 

 Model metrics: accuracy 

After training we have got the results, which are shown in 

Figure 8, and they after final iteration were: 

 Training accuracy: 78% 

 Training loss: 0.16 

 Validation accuracy: 64% 

 Validation loss: 0.19 
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Fig. 8. Training without removing background images results graph. 

The result shows that model validates new images by 64% 

accuracy. However, after testing manually this model with 

images which very different environments, the result have 

been even worse. 

The next experiment were held by training model with 

removed background. The model parameters were: 

 Image width: 64 

 Image height: 40 

 Training dataset samples: 421 

 Validation dataset samples: 121 

 Epochs: 50 

 Batch size: 32 

 Model loss function: mean squared error 

 Model optimizer: stochastic gradient descent 

 Model metrics: accuracy 

After training we got the results, which are shown in 

Figure 9, and they after final iteration were: 

 Training accuracy: 91% 

 Training loss: 0.07 

 Validation accuracy: 82% 

 Validation loss: 0.12 

 
Fig. 9. Training with removed background images results graph. 

This time the result shows that model validates new images 

by 82% accuracy and after testing manually this model with 

images which very different environments, the result shown 

about the same accuracy. 

All our tests and their results are shown in the table below. 

Some of the most sophisticated training experiments have not 

been completed, as it was not immediately meaningful to 

perform them due to poor results from simple training. 

TABLE I.  DIFFERENT TRAINING VALIDATION TABLE 

Columns of the table represents training of the model, 

rows – how model was validated:  

A - Simple training on original images; 

B - Trained with removed backgrounds; 

C - Trained with background replacements; 

x/y – training accuracy / validation accuracy 

The results showed that the removal of the background 

significantly improves the accuracy of the model recognition. 

The best results were from experiments where training took 

place with removed background pictures and validating with 

also removed background images or smooth background 

images. 

VIII. DISCUSSION AND FUTURE WORK 

In this work several different training experiments were 

performed, watching and studying accuracy of the trained 

models. The experiments showed that the results depended 

more not on the model used and its parameters, but on the 

transformation of the images. To achieve the best results 

image preprocessing played a key role in this experiment. The 

best result was reached by removing background before 

training.  

Our interpretation of the results is that removing the 

background reduces the variation in the data and makes the 

machine learning model focus on the person in the image. 

Without the background removal the models are prone to 

overfitting, probably basing their decision on wrong features 

of the image. Might be that similar accuracy can be achieved 

without background removal, but with much more data, 

30 epochs A B C 

1. Background of a 

specific color 

- 91/82 86/77 

2. A smooth natural 

background 

81/77 92/80 81/70 

3. Static background 

(colorful) 

52/54 62/55 58/52 

4. Changing 

background 

40/50 53/50 Not tried 
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training, and probably more powerful models. In that case the 

models have to infer that the person in the foreground is the 

most important object in the images and learn how to 

distinguish it on its own. Motion or depth information, which 

is used in many gesture recognition systems, would also make 

separation of the person in front from the background easier 

and likely not necessary to be done explicitly. 

This is consistent with results discussed in related work 

(Section II) where other authors either use motion and/or depth 

information, or also crop the foreground from the background 

in some way.  

In our approach it is not necessary to remove the 

background during testing/valuation. The best validation 

results are on data with smooth natural backgrounds. The 

accuracy of this validation data reached 92%. A reasonable 

future work would be to attempt to create a model that can 

better recognize offered handshakes in a wider range of 

environments. 
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