
78

A Polite Robot: Visual Handshake Recognition

Using Deep Learning
Liutauras Butkus, Mantas Lukoševičius

Faculty of Informatics

Kaunas University of Technology

Kaunas, Lithuania

liutauras.butkus@ktu.edu, mantas.lukosevicius@ktu.lt

Abstract—Our project was to create a demo system where a small

humanoid robot accepts an offered handshake when it sees it.

The visual handshake recognition, which is the main part of the

system proved to be not an easy task. Here we describe how and

how well we solved it using deep learning. In contrast to most

gesture recognition research we did not use depth information or

videos, but did this on static images. We wanted to use a simple

camera and our gesture is rather static. We have collected a

special dataset for this task. Different configurations and learning

algorithms of convolutional neural networks were tried.

However, the biggest breakthrough came when we could

eliminate the background and make the model concentrate on the

person in front. In addition to our experiment results we can also

share our dataset.
Keywords—image recognition, computer vision, deep learning,

convolutional neural networks, robotics

I. INTRODUCTION

The goal of this project is to create a robot that can visually

recognize an offered handshake and accept it. When the robot

sees a man offering a handshake, it responds by stretching its

arm too. This serves as a visual and interactive demonstration,

which would get students more interested in machine learning

and robotics.

For this purpose we used a small humanoid robot, a simple

camera mounted on it, and deep convolutional neural networks

for image recognition. The recognition, as well as training of

it, were done on a PC and the command to raise the arm was

sent back to the robot.

This article mainly shares our experience in developing

and training the visual handshake recognition system, which

proved to not be trivial. In particular, we will discuss how

images were collected, preprocessed, what architecture of

convolutional neural networks was used, how it was trained

and tested; what gave good and what not so good results.

This document is divided into several sections. Section II

reviews existing solution to similar problem. Section III

introduces our method for this project. Section IV describes

the data set used in this study. Section V emphasizes

importance of data preprocessing before training. Section VI

describes robot interface. Sections VII and VIII provide

analysis of results and conclusions.

II.

RELATED WORK

Virtually all vision-based hand gesture recognition systems

described in literature use (a) image sequences (videos) with

(b) depth information in them, see [1] for a good recent

survey. Microsoft Kinect [2] and Leap Motion [3] are two

examples of popular sensors specifically designed for gesture

and posture 3D tracking. While clearly both temporal (a) and

depth (b) aspects are helpful in recognizing hand gestures, our

system uses neither of the two. We (b) used an inexpensive

camera for simple RGB image acquisition to make the system

more accessible and the algorithms more widely applicable,

e.g., in smartphones, natural lighting. We also (a) used single

frames to recognize the extended hand for the handshake,

since the gesture is rather static – just holding the extended

hand still – and could perhaps be called “posture”. This makes

the recognition problem considerably harder.

A bit similar project to ours called “Gesture Recognition

System using Deep Learning” was presented in PyData

Warsaw 2017 conference [4]. The author introduced a Python-

based, deep learning gesture recognition model that is

deployed on an embedded system, works in real-time and can

recognize 25 different hand gestures from a simple webcam

stream. The development of the system included: a large-scale

crowd-sourcing operation to collect over 150,000 short video

clips, a process to decide which deep learning framework to

use, the development of a network architecture that allows for

classifications of video clips solely with RGB input frames,

the iterations necessary to make the neural network run in real-

time on embedding devices, and lastly, the discovery and

development of playful gesture-based applications. Their

approach is still different from our approach in that they used

video samples as their input (several frames at a time) and

tried to recognize moving gestures.

There is considerable literature similar to our approach in

both (a) and (b) for recognizing sign language hand gestures

(or rather postures) from RGB images, including using deep

learning [5]. These approaches, however, usually work with

images of a single hand on a uniform background where the

hand can be cropped from the image using thresholding [5],

skin color [6], or relying on the subject wearing a brightly-

colored glove [7].

Copyright held by the author(s).

79

III. OUR METHOD

Fig. 1. System training model.

Fig. 2. System running model.

The system model consists of several parts showed in

Figure 1 and 2, including camera, camera images pre-

processing, convolutional neural network’s training using deep

learning, graphical user interface, robot interface and robot

itself.

At first camera was used to collect the image dataset. This

is described in section IV. After later research, which is

described in section VI, the images in the dataset had to be

pre-processed to be able to train the model, which is the next

part of our system. Using Keras library the model was created,

compiled and finally trained with the images (this process

explained in section VI). The final part is to run the model to

recognize new live images. For this reason camera’s interface

was programmed to take photos at every 0.5 second, the model

gets those images as an input and returns probability of seeing

an offered handshake as an output result. If this result is above

a certain threshold, a robot interface sends a command to robot

to perform a corresponding task. This part more deeply

described in section VI.

A. Choice of using deep learning libraries

Deep learning [8] (also known as deep structured learning

or hierarchical learning) is part of a broader family of machine

learning methods based on learning data representations, as

opposed to task-specific algorithms. Learning can be

supervised, semi-supervised or unsupervised.

Deep learning models are loosely related to information

processing and communication patterns in a biological nervous

system, such as neural coding that attempts to define a

relationship between various stimuli and associated neuronal

responses in the brain.

Deep learning architectures such as deep neural networks,

deep belief networks and recurrent neural networks [9] have

been applied to fields including computer vision, speech

recognition, natural language processing, audio recognition,

social network filtering, machine translation, bioinformatics

and drug design, where they have produced results comparable

to and in some cases superior to human experts.

Convolutional networks [8], also known as convolutional

neural networks, or CNNs, are a specialized kind of neural

network for processing data that has a known grid-like

topology. Examples include time-series data, which can be

thought of as 1-D grid taking samples at regular time intervals,

and image data, which can be thought of as a 2-D grid of

pixels. Convolutional networks have been tremendously

successful in practical applications. The name “convolutional

neural network” indicates that the network employs a

mathematical operation called convolution. Convolution is a

specialized kind of linear operation. Convolutional networks

are simply neural networks that use convolution in place of

general matrix multiplication in at least one of their layers.

Keras [10] is a high-level deep learning library written in

Python and capable of running on top of either TensorFlow or

Theano deep learning libraries. It was developed with a focus

on enabling fast experimentation. Being able to go from idea

to result with the least possible delay is key to doing good

research. Keras deep learning library allows for easy and fast

prototyping (through total modularity, minimalism, and

extensibility). It supports both convolutional networks (we

used in our solution) and recurrent networks, as well as

combinations of the two. Keras also supports arbitrary

connectivity schemes (including multi-input and multi-output

training) and runs seamlessly on CPU and GPU. The core data

structure of Keras is a model, a way to organize layers. The

main type of model is the Sequential model, a linear stack of

layers. Keras’ Guiding principles include Modularity. A model

is understood as a sequence or a graph of standalone, fully-

configurable modules that can be plugged together with as

little restrictions as possible. In particular, neural layers, cost

functions, optimizers, initialization schemes, activation

functions, regularization schemes are all standalone modules

that users can combine to create new models. Each module

should be kept short and simple. To be able to easily create

new modules allows for total expressiveness, making Keras

suitable for advanced research.

B. Our convolutional neural network model

The convolutional neural network model that we used is

specified in Figure 3.

Fig. 3. Our convolutional neural network model.

It takes 64x40 resolution images as inputs, consists of

three convolutional layers, each followed by pooling, and has

a single node output. We use rectified linear units in all layers

except for the output node where it is sigmoid.

80

C. Training process

Before starting to train the model there are several

parameters which describe training details. The first parameter

is epochs count. Epoch itself is an arbitrary milestone,

generally defined as “one pass over the entire dataset”, used to

separate training into distinct phases, which is useful for

logging and periodic evaluation. In general it means how

many times the process will go through the training set.

Second parameter is batch size. Batch size defines number

of samples that going to be propagated through the network.

For instance, there are 200 training samples and we want to set

up batch size equal to 30. Algorithm takes first 30 samples

from the training dataset and trains network. Next it takes

second 30 samples and trains network again. The procedure

can be done until we propagate through the networks all

samples. However, the problem usually happens with the last

set of samples. In this example the last 20 samples which is

not divisible by 30 without remainder. The simplest solution is

just to get final 20 samples and train the network.

We have tried different loss functions and training

optimization methods. The ones that worked reasonably well

in the end are reported in Section VII.

Train accuracy and train loss are calculated on the go,

during training. Figures in Section VII show how well our

network is doing on the data it is being trained. Training

accuracy usually keeps increasing throughout training.

D. Validation process

To validate the model we need to have new dataset this

new images, which has not been used in training process.

Validation is usually carried out together with training. After

every epoch, the model is tested against a validation set, and

validation loss and accuracy are calculated. These numbers tell

you how good your model is at predicting outputs for inputs it

has never seen before. Validation accuracy increases initially

and drops as you over fit. Overfitting happens when our model

fits too well to the training set. It then becomes difficult for the

model to generalize to new examples that were not in the

training set. For example, our model recognizes specific

images in your training set instead of general patterns. Our

training accuracy will be higher than the accuracy on the

validation/test set.

E. Testing process

To test the model we need another new dataset. Testing

usually is run manually by giving an image from dataset for

trained model to get a result. And the result is a percent value

that shows probability on each output option

IV. DATA COLLECTION PREPARATION

As we mentioned in the previous section a collection of

image data was needed to implement this project. As the

system only recognizes greetings, only two results are

possible: greetings are recognized or not. During the

development of the whole project, more than 4,000 different

images were collected for the training of the neural network.

Approximately 2000 for each category. Single-image

resolution is 318x198.

We can see in Figure 4, that in the image, one person was

usually with his hand stuck or not. It was also tried to capture

images in as many different environments as possible. Human

clothing was also varied trying to capture as diverse as

possible colors. This is important in order to ensure that

recognition is not restricted to a particular specific situation.

Fig. 4. Image samples: top positive, bottom negative.

The pictures were divided into three sets: training,

validation and testing. The neural network is taught with

training data. It is then validated with validation data to verify

that a well-trained neural network performs recognition with

new examples. The test data is intended to validate the final

neural network's capability to obtain the final true recognition.

In addition, data augmentation [11] was used during training,

in which various small transformations were made to the

images before training on them (rotation, translation, color-

shift, up- /down-scaling).

If there are people who are interested in this task, we could

share the data with everyone who wants it.

V. BACKGROUND REMOVAL

Initially, we tried to train the neural network with the data

obtained directly from the camera without preprocessing them.

However, it has been noticed that the model with the best

attempt reached 78 percent training accuracy and about 64

percent validation accuracy followed by overfitting, during

which the error rate increased significantly. For this reason, it

was necessary to look for solutions on how to avoid overfitting

and how to increase the validation accuracy of the model. To

achieve this, attempts were made to change the model's

parameters, but this did not improve result as much as it was

expected. Then it was decided to process the data itself. From

previous experiments, we were able to get the impression that

overfitting appears due to the excessive color gamut and color

of the images. For this reason, we have decided to try

removing background images and training a neural network

with pictures without background. However, that causes a new

problem. How to detect where the background is and where is

an object (in this case a human)? For this problem, we decided

to take the first image without a human and claim that it is a

background and all other images are objects with backgrounds.

Though, in this case camera had to be in fixed position. Then

we were able to subtract two images and get image without a

background. Usually, after subtraction some noise always had

81

left in images. To reduce it, we set a permissible error for pixel

RGB values. You can see those images in Figure 5.

Fig. 5. Same images with (left) and without (right) background.

The result was obvious. It's possible to achieve 91 percent

accuracy with a smooth natural background. This means that

the model is quite precise enough to recognize the extended

hand when the background behind the human is equal and

does not need to be removed.

In order to obtain this result, first we needed to draw up a

test plan, which would make it clear how the training is most

appropriate. We've identified three methods (regular training,

training with removed background, training with attached

backgrounds), and five types of data (when the background is

a specific color, when the background is smooth and natural,

when the background is static color, when the background is

changing and when the background is with a few outsiders).

All test results are presented in the results Section VII.

VI.INTERFACING ROBOT

Fig. 6. Photo of our robot and use case.

For this project HR-OS1 Humanoid Endoskeleton robot

[12] was used. It is showed in Figure 6. It has integrated

onboard Linux computer with Intel Atom processor, which

gives all the processing power to run robot. The HR-OS1 is a

hackable, modular, humanoid robot development platform

designed from the ground up with customization and

modification in mind. It has built in software which invokes

robot actions. You can see robot’s software interface in Figure

7.

Fig. 7. Robot joints management interface.

Robot interface is used when the model is started to predict

new images. After CNN return probability of the image it is

sent to robot interface. Then robot interface reads the input

value and if it is true interface runs command for a robot to

raise its hand.

VII. EXPERIMENT RESULTS AND ANALYSIS

In this section we will explain in detail what experiments

were done and what results were achieved.

As we mentioned in the previous section the first

experiments were carried out using dataset with non-removed

background images for training and validation. The other

parameters were:

 Image width: 64

 Image height: 40

 Training dataset samples: 421

 Validation dataset samples: 122

 Epochs: 30

 Batch size: 32

 Model loss function: mean squared error

 Model optimizer: stochastic gradient descent

 Model metrics: accuracy

After training we have got the results, which are shown in

Figure 8, and they after final iteration were:

 Training accuracy: 78%

 Training loss: 0.16

 Validation accuracy: 64%

 Validation loss: 0.19

82

Fig. 8. Training without removing background images results graph.

The result shows that model validates new images by 64%

accuracy. However, after testing manually this model with

images which very different environments, the result have

been even worse.

The next experiment were held by training model with

removed background. The model parameters were:

 Image width: 64

 Image height: 40

 Training dataset samples: 421

 Validation dataset samples: 121

 Epochs: 50

 Batch size: 32

 Model loss function: mean squared error

 Model optimizer: stochastic gradient descent

 Model metrics: accuracy

After training we got the results, which are shown in

Figure 9, and they after final iteration were:

 Training accuracy: 91%

 Training loss: 0.07

 Validation accuracy: 82%

 Validation loss: 0.12

Fig. 9. Training with removed background images results graph.

This time the result shows that model validates new images

by 82% accuracy and after testing manually this model with

images which very different environments, the result shown

about the same accuracy.

All our tests and their results are shown in the table below.

Some of the most sophisticated training experiments have not

been completed, as it was not immediately meaningful to

perform them due to poor results from simple training.

TABLE I. DIFFERENT TRAINING VALIDATION TABLE

Columns of the table represents training of the model,

rows – how model was validated:

A - Simple training on original images;

B - Trained with removed backgrounds;

C - Trained with background replacements;

x/y – training accuracy / validation accuracy

The results showed that the removal of the background

significantly improves the accuracy of the model recognition.

The best results were from experiments where training took

place with removed background pictures and validating with

also removed background images or smooth background

images.

VIII. DISCUSSION AND FUTURE WORK

In this work several different training experiments were

performed, watching and studying accuracy of the trained

models. The experiments showed that the results depended

more not on the model used and its parameters, but on the

transformation of the images. To achieve the best results

image preprocessing played a key role in this experiment. The

best result was reached by removing background before

training.

Our interpretation of the results is that removing the

background reduces the variation in the data and makes the

machine learning model focus on the person in the image.

Without the background removal the models are prone to

overfitting, probably basing their decision on wrong features

of the image. Might be that similar accuracy can be achieved

without background removal, but with much more data,

30 epochs A B C

1. Background of a

specific color

- 91/82 86/77

2. A smooth natural

background

81/77 92/80 81/70

3. Static background

(colorful)

52/54 62/55 58/52

4. Changing

background

40/50 53/50 Not tried

83

training, and probably more powerful models. In that case the

models have to infer that the person in the foreground is the

most important object in the images and learn how to

distinguish it on its own. Motion or depth information, which

is used in many gesture recognition systems, would also make

separation of the person in front from the background easier

and likely not necessary to be done explicitly.

This is consistent with results discussed in related work

(Section II) where other authors either use motion and/or depth

information, or also crop the foreground from the background

in some way.

In our approach it is not necessary to remove the

background during testing/valuation. The best validation

results are on data with smooth natural backgrounds. The

accuracy of this validation data reached 92%. A reasonable

future work would be to attempt to create a model that can

better recognize offered handshakes in a wider range of

environments.

REFERENCES

[1] Maryam Asadi-Aghbolaghi, Albert Clapes, Marco Bellantonio, Hugo
Jair Escalante, “A survey on deep learning based approaches for action
and gesture recognition in image sequences”, 12th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2017), 2017
http://sunai.uoc.edu/~vponcel/doc/survey-deep-learning_fg2017.pdf,

[2] Microsoft Robotics, “Kinect Sensor”, accessed on 05 - 2018
https://msdn.microsoft.com/en-us/library/hh438998.aspx

[3] Leap Motion, “Leap Motion – Developer”, accessed on 05 - 2018
https://developer.leapmotion.com/

[4] Joanna Materzynska, “Building a Gesture Recognition System using
Deep Learning”, PyData Warsaw 2017,
https://medium.com/twentybn/building-a-gesture-recognition-system-
using-deep-learning-video-d24f13053a1

[5] Oyedotun, O.K. & Khashman, “Deep learning in vision-based static
hand gesture recognition“, Neural Computing and Applications (2017)
28: 3941. https://doi.org/10.1007/s00521-016-2294-8

[6] Dennis Núñez Fernández, Bogdan Kwolek, “Hand Posture Recognition
Using Convolutional Neural Network” Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications. CIARP 2017.
Lecture Notes in Computer Science, vol 10657. Springer, Cham , 2018
http://home.agh.edu.pl/~bkw/research/pdf/2017/FernandezKwolek_CIA
RP2017.pdf

[7] Rosalina, L. Yusnita, N. Hadisukmana, R. B. Wahyu, R. Roestam and
Y. Wahyu, "Implementation of real-time static hand gesture recognition
using artificial neural network," 2017 4th International Conference on
Computer Applications and Information Processing Technology
(CAIPT), Kuta Bali, 2017
http://journal.binus.ac.id/index.php/commit/article/viewFile/2282/3245

[8] Ian Goodfellow, Yoshua Bengio, Aaron Courville, “Deep Learning”,
MIT Press, 2016. http://www.deeplearningbook.org/

[9] Denny Britz, „Recurrent Neural Networks Tutorial, Part 1 – Introduction
to RNNs“, accessed on 05 - 2018
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-
1-introduction-to-rnns/

[10] Keras documentation, “Why use Keras?”, accessed on 05 - 2018
https://keras.io/why-use-keras/

[11] Prasad Pai, “Data Augmentation Techniques in CNN using Tensorflow”,
accessed on 05 - 2018 https://medium.com/ymedialabs-innovation/data-
augmentation-techniques-in-cnn-using-tensorflow-371ae43d5be9

[12] Tossen Robotics, “HR-OS1 Humanoid Endoskeleton spescifications”,
accessed on 05 - 2018 http://www.trossenrobotics.com/HR-OS1

[13] Połap, Dawid, Marcin Woźniak, Christian Napoli, Emiliano Tramontana,
and Robertas Damaševičius. "Is the colony of ants able to recognize
graphic objects?." In International Conference on Information and
Software Technologies, pp. 376-387. Springer, 2015.

[14] Woźniak, Marcin, Dawid Połap, Christian Napoli, and Emiliano
Tramontana. "Graphic object feature extraction system based on cuckoo
search algorithm." Expert Systems with Applications, vol. 66, pp. 20-31,
2016.

